OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2459–2468

Image quality in double- and triple-intensity ghost imaging with classical partially polarized light

Henri Kellock, Tero Setälä, Tomohiro Shirai, and Ari T. Friberg  »View Author Affiliations

JOSA A, Vol. 29, Issue 11, pp. 2459-2468 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Classical ghost imaging is a correlation-imaging technique in which the image of the object is found through intensity correlations of light. We analyze three different quality parameters, namely the visibility, the signal-to-noise ratio (SNR), and the contrast-to-noise ratio (CNR), to assess the performance of double- and triple-intensity correlation-imaging setups. The source is a random partially polarized beam of light obeying Gaussian statistics, and the image quality is evaluated as a function of the degree of polarization (DoP). We show that the visibility improves when the DoP and the order of imaging increase, while the SNR behaves oppositely. The CNR is for the most part independent of DoP and the imaging order. The results are important for the development of new imaging devices using partially polarized light.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(110.4280) Imaging systems : Noise in imaging systems
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Imaging Systems

Original Manuscript: August 22, 2012
Manuscript Accepted: September 27, 2012
Published: October 24, 2012

Henri Kellock, Tero Setälä, Tomohiro Shirai, and Ari T. Friberg, "Image quality in double- and triple-intensity ghost imaging with classical partially polarized light," J. Opt. Soc. Am. A 29, 2459-2468 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Gatti, E. Brambilla, and L. Lugiato, “Quantum imaging,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2008), Vol. 51, pp. 251–348.
  2. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010). [CrossRef]
  3. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef]
  4. D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995). [CrossRef]
  5. R. Bennink, S. Bentley, and R. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002). [CrossRef]
  6. A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004). [CrossRef]
  7. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef]
  8. V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008). [CrossRef]
  9. T. Setälä, T. Shirai, and A. T. Friberg, “Fractional Fourier transform in temporal ghost imaging with classical light,” Phys. Rev. A 82, 043813 (2010). [CrossRef]
  10. T. Shirai, T. Setälä, and A. T. Friberg, “Temporal ghost imaging with classical non-stationary pulsed light,” J. Opt. Soc. Am. B 27, 2549–2555 (2010). [CrossRef]
  11. T. Shirai, T. Setälä, and A. Friberg, “Ghost imaging of phase objects with classical incoherent light,” Phys. Rev. A 84, 041801(R) (2011). [CrossRef]
  12. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009). [CrossRef]
  13. C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B 99, 599–604 (2010). [CrossRef]
  14. P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010). [CrossRef]
  15. K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011). [CrossRef]
  16. T. Shirai, H. Kellock, T. Setälä, and A. T. Friberg, “Imaging through an aberrating medium with classical ghost diffraction,” J. Opt. Soc. Am. A 29, 1288–1292 (2012). [CrossRef]
  17. A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004). [CrossRef]
  18. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005). [CrossRef]
  19. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006). [CrossRef]
  20. D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, “Enhancing visibility and resolution in nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92, 201102 (2008). [CrossRef]
  21. H.-G. Li, Y.-T. Zhang, D.-Z. Cao, J. Xiong, and K.-G. Wang, “Third-order ghost interference with thermal light,” Chin. Phys. B 17, 4510–4515 (2008). [CrossRef]
  22. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010). [CrossRef]
  23. F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010). [CrossRef]
  24. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008). [CrossRef]
  25. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009). [CrossRef]
  26. I. Agafonov, M. Chekhova, T. S. Iskhakov, and L.-A. Wu, “High-visibility intensity interference and ghost imaging with pseudo-thermal light,” J. Mod. Opt. 56, 422–431 (2009). [CrossRef]
  27. G. Brida, M. Chekhova, G. Fornaro, M. Genovese, E. Lopaeva, and I. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011). [CrossRef]
  28. H.-C. Liu, D.-S. Guan, L. Li, S.-H. Zhang, and J. Xiong, “The impact of light polarization on imaging visibility of nth-order intensity correlation with thermal light,” Opt. Commun. 283, 405–408 (2010). [CrossRef]
  29. Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun. 283, 3838–3845 (2010). [CrossRef]
  30. T. Shirai, H. Kellock, T. Setälä, and A. T. Friberg, “Visibility in ghost imaging with classical partially polarized electromagnetic beams,” Opt. Lett. 36, 2880–2882 (2011). [CrossRef]
  31. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  32. J. W. Goodman, Statistical Optics (Wiley, 1985).
  33. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  34. D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005). [CrossRef]
  35. Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005). [CrossRef]
  36. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009). [CrossRef]
  37. Y.-C. Liu and L.-M. Kuang, “A theoretical scheme of thermal-light ghost imaging by nth-order intensity correlation,” http://arxiv.org/abs/0903.5015 .
  38. H. Kellock, T. Setälä, T. Shirai, and A. T. Friberg, “Higher-order ghost imaging with partially polarized classical light,” Proc. SPIE 8171, 81710Q (2011). [CrossRef]
  39. T. Setälä, K. Lindfors, M. Kaivola, J. Tervo, and A. T. Friberg, “Intensity fluctuations and degree of polarization in three-dimensional thermal light fields,” Opt. Lett. 29, 2587–2589 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited