OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2479–2497

Quantitative comparison of gradient index and refractive lenses

Vinh Nguyen, Stéphane Larouche, Nathan Landy, Jae Seung Lee, and David R. Smith  »View Author Affiliations

JOSA A, Vol. 29, Issue 11, pp. 2479-2497 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the Seidel wavefront aberrations and spot sizes of gradient index (GRIN) singlet lenses with Δ n 1 . We consider and compare curved and planar GRIN lenses with F-numbers of 5 and 1 against equivalent refractive lenses. We find that the planar GRIN lenses generally have larger spot sizes compared to their refractive lens equivalents at wide angles. This appears to be due to an inability to correct for coma by adjusting the refractive index gradient alone. We can correct for the coma by bending the GRIN lens. This results in a singlet lens with performance close to but not exceeding that of the equivalent refractive lens. We also examine the impact of anisotropy on the planar GRIN lenses. We find that fabricating the planar GRIN lenses from a uniaxial medium has the potential to improve the performance of the lenses.

© 2012 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(080.2740) Geometric optics : Geometric optical design
(080.3620) Geometric optics : Lens system design
(080.3630) Geometric optics : Lenses
(080.4225) Geometric optics : Nonspherical lens design

Original Manuscript: June 25, 2012
Revised Manuscript: September 18, 2012
Manuscript Accepted: September 19, 2012
Published: October 25, 2012

Vinh Nguyen, Stéphane Larouche, Nathan Landy, Jae Seung Lee, and David R. Smith, "Quantitative comparison of gradient index and refractive lenses," J. Opt. Soc. Am. A 29, 2479-2497 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  4. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008). [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  6. W. E. Kock, “Metallic delay lenses,” Bell Sys. Tech. J. 27, 58–82 (1948).
  7. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84, 3232–3234 (2004). [CrossRef]
  8. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005). [CrossRef]
  9. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006). [CrossRef]
  10. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, D. C. Vier, S. Schultz, D. R. Smith, and D. Schurig, “Microwave focusing and beam collimation using negative index of refraction lenses,” IET Microw. Antennas Propag. 1, 108–115 (2007). [CrossRef]
  11. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E 71, 036609 (2005). [CrossRef]
  12. D. Schurig and D. R. Smith, “Negative index lens aberrations,” Phys. Rev. E 70, 065601 (2004). [CrossRef]
  13. R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, “Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials,” Opt. Express 17, 21030–21041 (2009). [CrossRef]
  14. H. F. Ma, X. Chen, X. M. Yang, H. S. Xu, Q. Cheng, and T. J. Cui, “A broadband metamaterial cylindrical lens antenna,” Chin. Sci. Bull. 55, 2066–2070 (2010). [CrossRef]
  15. C. Xi, M. Huifeng, Y. Xinmi, C. Qiang, J. W. Xiang, and C. T. Jun, “X-band high directivity lens antenna realized by gradient index metamaterials,” in Microwave Conference, 2009 (APMC, 2009), pp. 793–797.
  16. H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, “Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials,” Appl. Phys. Lett. 95, 094107 (2009). [CrossRef]
  17. H. F. Ma, X. Chen, X. M. Yang, W. X. Jiang, and T. J. Cui, “Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials,” J. Appl. Phys. 107, 014902 (2010). [CrossRef]
  18. X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, “Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens,” Appl. Phys. Lett. 92, 131904 (2008). [CrossRef]
  19. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991), pp. xii, 852.
  20. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  21. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035–1038 (1980). [CrossRef]
  22. Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bioinspired lenses with a gradient refractive index,” J. Appl. Polym. Sci. 103, 1834–1841 (2007). [CrossRef]
  23. B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microwave Opt. Technol. Lett. 52, 1655–1659 (2010). [CrossRef]
  24. D. Freundt and B. Lucas, “Long range radar sensor for high-volume driver assistance systems market,” in SAE World Congress (SAE International, 2008), pp. 117–123.
  25. C. Fernandes, V. Brankovic, S. Zimmermann, M. Filipe, and L. Anunciada, “Dielectric lens antennas for wireless broadband communications,” Wireless Personal Commun. 10, 19–32 (1999). [CrossRef]
  26. W. Rotman, “Analysis of an EHF aplanatic zoned dielectric lens antenna,” IEEE Trans. Antennas Propag. 32, 611–617 (1984). [CrossRef]
  27. R. LaGuerra, “Automotive radar/lidar systems: a component-level market analysis of radar, lidar, ultrasonic, and optics-based automotive safety systems” (Technical Report) (ABI Research, 2004).
  28. T. Binzer, M. Klar, and V. Gross, “Development of 77 GHz radar lens antennas for automotive applications based on given requirements,” in 2nd International ITG Conference on Antennas (2007), pp. 205–209.
  29. W. X. Jiang, T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, “Layered high-gain lens antennas via discrete optical transformation,” Appl. Phys. Lett. 93, 221906 (2008). [CrossRef]
  30. K. Do-Hoon and D. H. Werner, “Beam scanning using flat transformation electromagnetic focusing lenses,” IEEE Antennas Wireless Propag. Lett. 8, 1115–1118 (2009). [CrossRef]
  31. J. P. Turpin, Z. Jiang, D.-H. Kwon, P. L. Werner, and D. H. Werner, “Metamaterial-enabled transformation optics lenses for antenna applications,” in Proceedings of the Fourth European Conference on Antennas and Propagation (2010), pp. 1–5.
  32. P. F. Goldsmith, Quasioptical Systems, 1st ed. (IEEE, 1998), p. 412.
  33. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), p. 680.
  34. M. J. Kidger, Fundamental Optical Design (SPIE, 2002), p. 290.
  35. W. T. Welford, Aberrations of Optical Systems, Adam Hilger Series on Optics and Optoelectronics (Hilger, 1986).
  36. V. N. Mahajan, Optical Imaging and Aberrations (SPIE, 1998), Vol. 1, p. 469.
  37. F. Bociort, “Thin-lens approximation for radial gradient-index lenses,” Opt. Eng. 35, 1292–1299 (1996). [CrossRef]
  38. F. Bociort and J. Kross, “Seidel aberration coefficients for radial gradient-index lenses,” J. Opt. Soc. Am. A 11, 2647–2656 (1994). [CrossRef]
  39. E. W. Marchand, “Third-order aberrations of the photographic Wood lens,” J. Opt. Soc. Am. 66, 1326–1330 (1976). [CrossRef]
  40. P. J. Sands, “Third-order aberrations of inhomogeneous lenses,” J. Opt. Soc. Am. 60, 1436–1443 (1970). [CrossRef]
  41. E. W. Marchand, “Aberrations of Wood and GRIN rod lenses,” Appl. Opt. 25, 3413–3417 (1986). [CrossRef]
  42. I. Schott, ed., Optical Glass: Description of Properties 2011(Duryea, 2011).
  43. J. M. Geary, Introduction to Lens Design: With Practical ZEMAX Examples, 2nd ed. (Willmann-Bell, 2007).
  44. V. N. Nguyen, S. H. Yonak, and D. R. Smith, “Multilayer W-band artificial dielectric on liquid crystal polymer,” IEEE Antennas Wireless Propag. Lett. 9, 974–977 (2010). [CrossRef]
  45. G. I. Greisukh, S. T. Bobrov, and S. A. Stephanov, Optics of Diffractive and Gradient-Index Elements and Systems, 1st ed. (SPIE, 1997), p. 391.
  46. V. N. Nguyen, S. H. Yonak, and D. R. Smith, “Millimeter-wave artificial dielectric gradient index lenses,” in Proceedings of 3rd European Conference on Antennas and Propagation (IEEE, 2009), pp. 1886–1890.
  47. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw Hill, 2008), p. 764.
  48. B. Schoenlinner, W. Xidong, J. P. Ebling, G. V. Eleftheriades, and G. M. Rebeiz, “Wide-scan spherical-lens antennas for automotive radars,” IEEE Trans. Microwave Theory Tech. 50, 2166–2175 (2002). [CrossRef]
  49. I. Awai, S. Kida, and O. Mizue, “Very thin and flat lens antenna made of artificial dielectrics,” in Proceedings of 2007 Korea-Japan Microwave Conference (2007), pp. 177–180.
  50. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18, 27748–27757 (2010). [CrossRef]
  51. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006). [CrossRef]
  52. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited