OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 2566–2575

Number of colors generated by smooth nonfluorescent reflectance spectra

Mika Flinkman, Hannu Laamanen, Pasi Vahimaa, and Markku Hauta-Kasari  »View Author Affiliations

JOSA A, Vol. 29, Issue 12, pp. 2566-2575 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we have analyzed statistical properties of the values of the first- and second-order derivatives of spectral reflectance curves. We show that values of all four tested spectral data sets have very similar statistical properties. We set outer limits that bound the clear majority of the values of the first- and second-order derivatives. These limits define smoothness of all nonfluorescent reflectance curves, and they can be used to form a new object color solid inside classical MacAdam limits, including all possible colors generated by smooth nonfluorescent reflectance spectra. We have used the CIELAB color space and filled the new object color solid with a hexagonal closest packing-point lattice to estimate that there exist about 2.5 million different colors, when viewed under the D65 standard illumination.

© 2012 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: April 26, 2012
Revised Manuscript: August 21, 2012
Manuscript Accepted: October 9, 2012
Published: November 21, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Mika Flinkman, Hannu Laamanen, Pasi Vahimaa, and Markku Hauta-Kasari, "Number of colors generated by smooth nonfluorescent reflectance spectra," J. Opt. Soc. Am. A 29, 2566-2575 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Stiles, G. Wyszecki, and N. Ohta, “Counting metameric object-color stimuli using frequency-limited spectral reflectance functions,” J. Opt. Soc. Am. 67, 779–784 (1977). [CrossRef]
  2. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. 3, 1673–1683 (1986). [CrossRef]
  3. T. Jääskeläinen, J. Parkkinen, and S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990). [CrossRef]
  4. C. van Trigt, “Smoothest reflactance functions. I. Definition and main results,” J. Opt. Soc. Am. 7, 1891–1904 (1990). [CrossRef]
  5. C. van Trigt, “Smoothest reflectance functions. II. Complete results,” J. Opt. Soc. Am. 7, 2208–2222 (1990). [CrossRef]
  6. M. J. Vrhel and H. J. Trussell, “Filter considerations in color correction,” IEEE Trans. Image Process. 3, 147–161 (1994). [CrossRef]
  7. A. García-Beltrán, J. L. Nieves, J. Hernández-Andrés, and J. Romero, “Linear bases for spectral reflectance functions of acrylic paints,” Color Res. Appl. 23, 39–45 (1998). [CrossRef]
  8. V. Bonnardel and L. T. Maloney, “Daylight, biochrome surfaces, and human chromatic response in the Fourier domain,” J. Opt. Soc. Am. A 17, 677–685 (2000). [CrossRef]
  9. O. Kohonen, J. Parkkinen, and T. Jääskeläinen, “Databases for spectral color science,” Color Res. Appl. 31, 381–390 (2006). [CrossRef]
  10. J. Lehtonen, J. Parkkinen, and T. Jääskeläinen, “Optimal sampling of color spectra,” J. Opt. Soc. Am. A 23, 2983–2988 (2006). [CrossRef]
  11. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
  12. J. P. S. Parkkinen, J. Hallikainen, and T. Jääskeläinen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  13. C.-C. Chiao, T. W. Cronin, and D. Osorio, “Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants,” J. Opt. Soc. Am. A 17, 218–224 (2000). [CrossRef]
  14. J. Y. Hardeberg, “On the spectral dimensionality of object colours,” in Proceedings of CGIV 2002: The First European Conference on Colour Graphics, Imaging, and Vision (The Society for Imaging Science and Technology, 2002), pp. 480–485.
  15. K. Nassau, The Physics and Chemistry of Color: The Fifteen Causes of Color, 2nd ed. (Wiley, 2001).
  16. D. L. MacAdam, “The theory of the maximum visual efficiency of color materials,” J. Opt. Soc. Am. 25, 249–252 (1935). [CrossRef]
  17. D. L. MacAdam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 316–367 (1935). [CrossRef]
  18. E. B. Titchener, Outline of Psychology (Macmillan, 1896).
  19. E. G. Boring, H. S. Langfeld, and H. P. Weld, Introduction to Psychology (Wiley, 1939).
  20. D. Nickerson and S. M. Newhall, “A psychological color solid,” J. Opt. Soc. Am. 33, 419–422 (1943). [CrossRef]
  21. M. Biot, Ann. Soc. Sci. Bruxelles 60, 149 (1946).
  22. D. L. MacAdam, “Note on the number of distinct chromaticities,” J. Opt. Soc. Am. 37, 308–309 (1947). [CrossRef]
  23. D. B. Judd and G. Wyszecki, Color in Business, Science and Industry, 3rd ed. (Wiley, 1975).
  24. M. R. Pointer and G. G. Attridge, “The number of discernible colors,” Color Res. Appl. 23, 52–54 (1998). [CrossRef]
  25. F. Martínez-Verdú, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. 24, 1501–1515 (2007). [CrossRef]
  26. J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008). [CrossRef]
  27. I. Marín-Franch and D. H. Foster, “Number of perceptually distinct surface colors in natural scenes,” J. Vis. 10(9):9, 1–7(2010). [CrossRef]
  28. Spectral Database, University of Eastern Finland Color Group, http://www.uef.fi/spectral/spectral-database .
  29. J. H. van Hateren, “Spatial, temporal and spectral pre-processing for colour vision,” Proc. R. Soc. Lond. B 251, 61–68(1993).
  30. M. R. Pointer, “The gamut of real surface colours,” Color Res. Appl. 5, 145–155 (1980). [CrossRef]
  31. M. Mahy, L. van Eycken, and A. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV,” Color Res. Appl. 19, 105–121 (1994).
  32. H. R. Kang, Color Technology for Electronic Imaging Devices (SPIE, 1997).
  33. R. W. G. Hunt, Measuring Colour, 3rd ed. (Fountain, 1998).
  34. J. Y. Hardeberg, “Acquisition and reproduction of colour images: colorimetric and multispectral approaches,” Ph.D. thesis (Ecole Nationale Supérieure des Télécommunications,” 1999).
  35. Project report EUR 19552EN, “Good practice guide to surface colour measurements” (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited