OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 2579–2590

Theory of diffraction effects in spatial frequency-modulated imaging

Daniel J. Higley, David G. Winters, Gregory L. Futia, and Randy A. Bartels  »View Author Affiliations

JOSA A, Vol. 29, Issue 12, pp. 2579-2590 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (603 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytic theory describing the effects of diffraction and aberrations on single-pixel imaging performed by temporally modulating illumination light is presented. This method encodes spatial information using sinusoidal temporal modulations that are chirped in frequency across the extent of an illumination line focus. With some approximations, a point spread function relationship as a function of defocus or other aberrations is found for both spatially coherent and incoherent cases. The theory is validated through experiments and simulations, including measurement of the transverse and longitudinal optical transfer function, and confirmation of insensitivity to aberrations and significant optical scattering after encoding of spatial information through temporal modulation.

© 2012 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(110.2990) Imaging systems : Image formation theory
(110.6760) Imaging systems : Talbot and self-imaging effects
(180.5810) Microscopy : Scanning microscopy
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Imaging Systems

Original Manuscript: August 31, 2012
Manuscript Accepted: October 10, 2012
Published: November 22, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Daniel J. Higley, David G. Winters, Gregory L. Futia, and Randy A. Bartels, "Theory of diffraction effects in spatial frequency-modulated imaging," J. Opt. Soc. Am. A 29, 2579-2590 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Art and M. B. Goodman, “Rapid-scanning confocal microscopy,” Methods Cell Biol. 38, 47–77 (1993). [CrossRef]
  2. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009). [CrossRef]
  3. S. H. Yue, M. N. Slipchenko, and J. X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5, 496–512 (2011). [CrossRef]
  4. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998). [CrossRef]
  5. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253–259 (1996). [CrossRef]
  6. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. 192, 217–226 (1998). [CrossRef]
  7. V. Andresen, A. Egner, and S. W. Hell, “Time-multiplexed multifocal multiphoton microscope,” Opt. Lett. 26, 75–77 (2001). [CrossRef]
  8. E. Chandler, E. Hoover, J. Field, K. Sheetz, W. Amir, R. Carriles, S. Y. Ding, and J. Squier, “High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy,” Appl. Opt. 48, 2067–2077 (2009). [CrossRef]
  9. E. E. Hoover, M. D. Young, E. V. Chandler, A. Luo, J. J. Field, K. E. Sheetz, A. W. Sylvester, and J. A. Squier, “Remote focusing for programmable multi-layer differential multiphoton microscopy,” Biomed. Opt. Express 2, 113–122 (2011). [CrossRef]
  10. K. E. Sheetz, E. E. Hoover, R. Carriles, D. Kleinfeld, and J. A. Squier, “Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2oscillator,” Opt. Express 16, 17574–17584 (2008). [CrossRef]
  11. G. Futia, P. Schlup, D. G. Winters, and R. A. Bartels, “Spatially chirped modulation imaging of absorption and fluorescent objects on single-element optical detector,” Opt. Express 19, 1626–1640 (2011). [CrossRef]
  12. P. Schlup, G. Futia, and R. A. Bartels, “Lateral tomographic spatial frequency modulated imaging,” Appl. Phys. Lett. 98, 211115 (2011). [CrossRef]
  13. E. E. Hoover, J. Field, D. Winters, M. Young, E. Chandler, J. Speirs, J. Lapenna, S. Kim, S.-Y. Ding, R. A. Bartels, J. Wang, and J. Squier, “Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems,” J. Biophotonics 12, 1–12 (2012). [CrossRef]
  14. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).
  15. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2004).
  16. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited