OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 2598–2607

Multimodal adaptive optics retinal imager: design and performance

Daniel X. Hammer, R. Daniel Ferguson, Mircea Mujat, Ankit Patel, Emily Plumb, Nicusor Iftimia, Toco Y. P. Chui, James D. Akula, and Anne B. Fulton  »View Author Affiliations

JOSA A, Vol. 29, Issue 12, pp. 2598-2607 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1807 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are complementary imaging modalities, the combination of which can provide clinicians with a wealth of information to detect retinal diseases, monitor disease progression, or assess new therapies. Adaptive optics (AO) is a tool that enables correction of wavefront distortions from ocular aberrations. We have developed a multimodal adaptive optics system (MAOS) for high-resolution multifunctional use in a variety of research and clinical applications. The system integrates both OCT and SLO imaging channels into an AO beam path. The optics and hardware were designed with specific features for simultaneous SLO/OCT output, for high-fidelity AO correction, for use in humans, primates, and small animals, and for efficient location and orientation of retinal regions of interest. The MAOS system was tested on human subjects and rodents. The design, performance characterization, and initial representative results from the human and animal studies are presented and discussed.

© 2012 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 1, 2012
Manuscript Accepted: October 23, 2012
Published: November 22, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Daniel X. Hammer, R. Daniel Ferguson, Mircea Mujat, Ankit Patel, Emily Plumb, Nicusor Iftimia, Toco Y. P. Chui, James D. Akula, and Anne B. Fulton, "Multimodal adaptive optics retinal imager: design and performance," J. Opt. Soc. Am. A 29, 2598-2607 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987). [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  3. F. C. Delori, “Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,” Appl. Opt. 33, 7439–7452 (1994). [CrossRef]
  4. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006). [CrossRef]
  5. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  6. A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [CrossRef]
  7. T. P. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25, 3021–3029 (2008). [CrossRef]
  8. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef]
  9. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005). [CrossRef]
  10. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17, 19382–19400 (2009). [CrossRef]
  11. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2, 748–763 (2011). [CrossRef]
  12. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011). [CrossRef]
  13. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2, 781–793 (2011). [CrossRef]
  14. T. Y. P. Chui, Z. Zhong, H. Song, and S. A. Burns, “Foveal avascular zone and its relationship to foveal pit shape,” Optom. Vis. Sci. 89, 602–610 (2012). [CrossRef]
  15. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2, 139–148 (2011). [CrossRef]
  16. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18, 5257–5270 (2010). [CrossRef]
  17. M. Pircher, J. S. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. K. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT,” Biomed. Opt. Express 2, 100–112 (2011). [CrossRef]
  18. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3, 1182–1199 (2012). [CrossRef]
  19. U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf, “Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination,” Invest. Ophthalmol. Visual Sci. 49, 3095–3099 (2008). [CrossRef]
  20. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2, 1674–1686 (2011). [CrossRef]
  21. R. B. Rosen, M. E. J. van Velthoven, P. M. T. Garcia, R. G. Cucu, M. D. de Smet, T. O. Muldoon, and A. Gh. Podoleanu, “Ultrahigh-resolution combined coronal optical coherence tomography confocal scanning ophthalmoscope (OCT/SLO): a pilot study,” Spektrum Augeheilkd 21, 17–28 (2007). [CrossRef]
  22. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18, 11607–11621 (2010). [CrossRef]
  23. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics SLO with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27, A265–A277 (2010). [CrossRef]
  24. S. A. Burns, R. Tumbar, A. E. Elsner, R. D. Ferguson, and D. X. Hammer, “Large field of view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007). [CrossRef]
  25. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006). [CrossRef]
  26. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006). [CrossRef]
  27. D. X. Hammer, R. D. Ferguson, M. Mujat, D. P. Biss, N. V. Iftimia, A. H. Patel, E. Plumb, M. Campbell, J. L Norris, A. Dubra, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Advanced capabilities of the multimodal adaptive optics imager,” Proc. SPIE 7885, 78850A (2011). [CrossRef]
  28. Z. Nadler, G. Wollstein, J. E. Nevins, H. Ishikawa, L. Kagemann, I. A. Sigal, R. D. Ferguson, D. X. Hammer, and J. S. Schuman, “Three-dimensional morphological evaluation of Lamina Cribrosa,” Ophthalmology (to be published).
  29. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008). [CrossRef]
  30. J. Won, L. Y. Shi, W. Hicks, J. Wang, R. Hurd, J. K. Naggert, B. Chang, and P. M. Nishina, “Mouse model resources for vision research,” J. Ophthalmol. 2011, 391384 (2011). [CrossRef]
  31. S. J. McKinnon, C. L. Schlamp, and R. W. Nickells, “Mouse models of retinal ganglion cell death and glaucoma,” Exp. Eye Res. 88, 816–824 (2009). [CrossRef]
  32. E. P. Rakoczy, I. S. Ali Rahman, N. Binz, C. R. Li, N. N. Vagaja, M. de Pinho, and C. M. Lai, “Characterization of a mouse model of hyperglycemia and retinal neovascularization,” Am. J. Pathol. 177, 2659–2670 (2010). [CrossRef]
  33. D. L. Greenwald, S. M. Cashman, and R. Kumar-Singh, “Mutation-independent rescue of a novel mouse model of retinitis pigmentosa,” Gene Ther. (2012). . [CrossRef]
  34. G. Li, H. Zwick, B. Stuck, and D. J. Lund, “On the use of schematic eye models to estimate retinal image quality,” J. Biomed. Opt. 5, 307–314 (2000). [CrossRef]
  35. E. García de la Cera, G. Rodríquez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vis. Res. 46, 2546–2553 (2006). [CrossRef]
  36. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express 18, 3458–3476 (2010). [CrossRef]
  37. C. Alt and C. P. Lin, “In vivo quantification of microglia dynamics with a scanning laser ophthalmoscope in a mouse model of focal laser injury,” Proc. SPIE 8209, 820907 (2012). [CrossRef]
  38. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett. 32, 659–661 (2007). [CrossRef]
  39. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express 3, 715–734 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (15362 KB)     
» Media 2: MOV (14384 KB)     
» Media 3: MOV (23449 KB)     
» Media 4: MOV (6634 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited