OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 2608–2611

Theoretical evaluation of scattering effect on retroreflective free-space optical communication

Hongwei Yin, Tianpeng Lan, Hailiang Zhang, Honghui Jia, Shengli Chang, and Juncai Yang  »View Author Affiliations

JOSA A, Vol. 29, Issue 12, pp. 2608-2611 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retroreflective free-space optical (RFSO) communication is a new concept of optical communication; it consists of an optical transceiver and a retromodulator and has advantages such as light weight, small volume, and low power consumption. The power captured by the receiver consists of two parts: retroreflective and scattering. The retroreflective characteristics are obtained using an analytical formula, the scattering characteristics using a Monte Carlo model. Results show that the scattering power plays an important role in a RFSO communication link, especially when the communication range is long or the meteorological range is short. Some rules are also obtained for the sake of system design, which include increasing the range from the transmitter and the receiver properly, increasing the area of the retromodulator, limiting the field of view of the receiver, and limiting the beam divergence of the transmitter.

© 2012 Optical Society of America

OCIS Codes
(290.1310) Scattering : Atmospheric scattering
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:

Original Manuscript: September 10, 2012
Revised Manuscript: November 7, 2012
Manuscript Accepted: November 7, 2012
Published: November 22, 2012

Hongwei Yin, Tianpeng Lan, Hailiang Zhang, Honghui Jia, Shengli Chang, and Juncai Yang, "Theoretical evaluation of scattering effect on retroreflective free-space optical communication," J. Opt. Soc. Am. A 29, 2608-2611 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).
  2. L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, “Retrocommunication—final report” (Swedish Defence Research Agency, 2004).
  3. G. C. Gilbreath and W. S. Rabinovich, Research in Free Space Optical Data Transfer at the U.S. Naval Research Laboratory (SPIE, 2004).
  4. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005). [CrossRef]
  5. W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).
  6. A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.
  7. P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.
  8. Y. Gil, N. Rotter, and S. Arnon, “Feasibility of retroreflective transdermal optical wireless communication,” Appl. Opt. 51, 4232–4239 (2012). [CrossRef]
  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  10. H. C. v. d. Hulst, Light Scattering by Small Particles (Dover, 1981).
  11. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods(Wiley-VCH, 2008).
  12. H. W. Yin, S. L. Chang, H. H. Jia, J. K. Yang, and J. C. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009). [CrossRef]
  13. H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009). [CrossRef]
  14. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited