OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 2612–2621

Spectral reflectivity recovery from the tristimulus values using a hybrid method

Bog G. Kim, Jeong-won Han, and Soo-been Park  »View Author Affiliations

JOSA A, Vol. 29, Issue 12, pp. 2612-2621 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study proposes an effective and accurate mechanism for spectral reflectivity recovery based on a hybrid technique. Adaptive non-negative matrix transformation, three-dimensional interpolation, and two-dimensional interpolation were reconstructed to an integrative hybrid recovery method. The existing spectral reflectivity data of 1269 Munsell matte color chips were used as reference data. Under the standard condition of a D65 illuminant and a 10° observer of 1964 CIE, the spectral reflectivity of the 1269 Munsell colors was reconstructed successfully using the optimized hybrid recovery method. The root mean square error and goodness of fitting were used to determine the quality of the presented method. Using the hybrid method, the strategy for fast and reliable spectral reflectivity recovery of given images were also presented and demonstrated.

© 2012 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(300.6550) Spectroscopy : Spectroscopy, visible
(330.1690) Vision, color, and visual optics : Color
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: June 12, 2012
Revised Manuscript: October 7, 2012
Manuscript Accepted: October 13, 2012
Published: November 22, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Bog G. Kim, Jeong-won Han, and Soo-been Park, "Spectral reflectivity recovery from the tristimulus values using a hybrid method," J. Opt. Soc. Am. A 29, 2612-2621 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed. (Wiley, 2000).
  2. J. Schanda, Colorimetry: Understanding the CIE System, 1st ed. (Wiley, 2007).
  3. N. Ohta and A. Robertson, Colorimetry: Fundamentals and Applications, 1st ed. (Wiley, 2006).
  4. S. G. Kandi and M. A. Tehran, “Applying metamer sets to investigate data dependency of principal component analysis method in recovery of spectral data,” Color Res. Appl. 36, 349–354 (2011). [CrossRef]
  5. D. A. Landgrebe, “Information extraction principles and methods for multispectral and hyperspectral remote sensing,” in Information Processing for Remote Sensing, C. H. Chen, ed. (World Scientific, 1999).
  6. L. W. MacDonald and R. Luo, Colour Imaging: Vision and Technology (Wiley, 1999).
  7. S. Westland and C. Ripamonti, Computational Color Science Using Matlab (Wiley, 2004).
  8. G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens. 43, 1351–1362 (2005). [CrossRef]
  9. H. S. Fairman and M. H. Brill, “The principal components of reflectance,” Color Res. Appl. 29, 104–110 (2004). [CrossRef]
  10. V. Babaei, S. H. Amirshahi, and F. Agahian, “Using weighted pseudo-inverse method for reconstruction of reflectance spectra and analyzing the dataset in terms of normality,” Color Res. Appl. 36, 295–305 (2011). [CrossRef]
  11. F. Agahian, S. A. Amirshahi, and S. H. Amirshahi, “Reconstruction of reflectance spectra using weighted principal component analysis,” Color Res. Appl. 33, 360–371 (2008). [CrossRef]
  12. T. Harifi, S. H. Amirshahi, and F. Agahian, “Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique,” Opt. Rev. 15, 302–308 (2008). [CrossRef]
  13. S. Zuffi, S. Santini, and R. Schettini, “From color sensor space to feasible reflectance spectra,” IEEE Trans. Signal Process. 56, 518–531 (2008). [CrossRef]
  14. S. Bianco, “Reflectance spectra recovery from tristimulus values by adaptive estimation with metameric shape correction,” J. Opt. Soc. Am. A 27, 1868–1877 (2010). [CrossRef]
  15. S. Farajikhah, F. Madanchi, and S. H. Amirshahi, “Nonlinear principal component analysis for compression of spectral data,” in Proceedings of Conference on Data Mining and Data Warehouses (2011), http://ailab.ijs.si/dunja/SiKDD2011/ .
  16. D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401, 788–791 (1999). [CrossRef]
  17. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Proceedings of Neural Information Processing Systems (MIT, 2000), Vol. 13, pp. 556–562.
  18. J. Kim and H. Park, “Fast nonnegative matrix factorization: an active-set-like method and comparisons,” SIAM J. Sci. Comput. 33, 3261–3281 (2011). [CrossRef]
  19. S. H. Amirshahi and S. A. Amirhahi, “Adaptive non-negative bases for reconstruction of spectral data from colorimetric information,” Opt. Rev. 17, 562–569 (2010). [CrossRef]
  20. F. M. Abed, S. H. Amirshahi, and M. R. M. Abed, “Reconstruction of reflectance data using an interpolation technique,” J. Opt. Soc. Am. A 26, 613–624 (2009). [CrossRef]
  21. W. L. Martinez, A. R. Martinez, and J. L. Solka, Exploratory Data Analysis with Matlab, 2nd ed. (Chapman & Hall, 2011).
  22. University of Joensuu Color Group, “Spectral Database,” http://spectral.joensuu.fi .
  23. The Bebel Color Company, “RGB coordinates of the Macbeth Color Checker,” http://www.babelcolor.com/main_level/ColorChecker.htm .
  24. The IRI Color Design, “Hue and Tone 120 system,” http://www.iricolor.com .
  25. Nippon Color and Design Research Institute Inc., “The color chart, marketing, and merchandising color chart,” http://www.ncd-ri.co.jp .
  26. E. B. Magrab, S. Azarm, B. Balachandran, J. H. Duncan, K. E. Herold, and G. C. Walsh, An Engineer’s Guide to Matlab, 3rd ed. (Pearson, 2011).
  27. M. de Berg, M. van Krefeld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms and Applications, 2nd ed. (Springer, 2000).
  28. I. Amidror, “Scattered data interpolation methods for electronic imaging systems: A survey,” J. Electron. Imaging 11, 157–176 (2002). [CrossRef]
  29. P. Green and L. MacDonald, Color Engineering Achieving Device Independent Colour (Addison-Wesley, 2002).
  30. J. Kasson, W. Plouffe, and S. Nin, “A tetrahedral interpolation technique for color space conversion,” Proc. SPIE 1909, 127–138 (1993). [CrossRef]
  31. W. L. Martinez and A. R. Martinez, Computational Statistics Handbook with Matlab, 2nd ed. (Chapman & Hall, 2002).
  32. We have prepared the supplementary materials for the detailed comparison of our technique with that of adaptive PCA and the method of [14]. It can be downloaded from our website: http://home.pusan.ac.kr/~boggikim/hybrid/supforjosa1.docx .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited