OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 2657–2666

Systematic design of loss-engineered slow-light waveguides

Fengwen Wang, Jakob Søndergaard Jensen, Jesper Mørk, and Ole Sigmund  »View Author Affiliations

JOSA A, Vol. 29, Issue 12, pp. 2657-2666 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.7390) Optical devices : Waveguides, planar
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

Original Manuscript: July 11, 2012
Manuscript Accepted: September 21, 2012
Published: November 28, 2012

Fengwen Wang, Jakob Søndergaard Jensen, Jesper Mørk, and Ole Sigmund, "Systematic design of loss-engineered slow-light waveguides," J. Opt. Soc. Am. A 29, 2657-2666 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  3. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008). [CrossRef]
  4. J. E. McMillan, X. D. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235–1237 (2006). [CrossRef]
  5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009). [CrossRef]
  6. M. Heuck, S. Blaaberg, and J. Mork, “Theory of passively mode-locked photonic crystal semiconductor lasers,” Opt. Express 18, 18003–18014 (2010). [CrossRef]
  7. J. G. Pedersen, S. S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008). [CrossRef]
  8. J. Grgić, J. R. Ott, F. Wang, O. Sigmund, A.-P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett. 108, 183903 (2012). [CrossRef]
  9. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006). [CrossRef]
  10. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005). [CrossRef]
  11. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005). [CrossRef]
  12. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004). [CrossRef]
  13. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15, 5264–5270 (2007). [CrossRef]
  14. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  15. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  16. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  17. T. Kawasaki, D. Mori, and T. Baba, “Experimental observation of slow light in photonic crystal coupled waveguides,” Opt. Express 15, 10274–10281 (2007). [CrossRef]
  18. F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct. Fundam. Applic. 10, 378–388 (2012). [CrossRef]
  19. R. Stainko and O. Sigmund, “Tailoring dispersion properties of photonic crystal waveguides by topology optimization,” Waves Random Complex Media 17, 477–489 (2007). [CrossRef]
  20. F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397(2011). [CrossRef]
  21. F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidisc. Optim. 43, 767–784 (2011). [CrossRef]
  22. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000). [CrossRef]
  23. R. Ferrini, R. Houdre, H. Benisty, M. Qiu, and J. Moosburger, “Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant,” J. Opt. Soc. Am. B 20, 469–478 (2003). [CrossRef]
  24. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009). [CrossRef]
  25. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  26. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007). [CrossRef]
  27. M. Patterson and S. Hughes, “Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides,” J. Opt. 12, 104013 (2010). [CrossRef]
  28. A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17, 8676–8684 (2009). [CrossRef]
  29. R. Ferrini, D. Leuenberger, R. Houdre, H. Benisty, M. Kamp, and A. Forchel, “Disorder-induced losses in planar photonic crystals,” Opt. Lett. 31, 1426–1428 (2006). [CrossRef]
  30. K. C. Huang, E. Lidorikis, X. Y. Jiang, J. D. Joannopoulos, K. A. Nelson, P. Bienstman, and S. H. Fan, “Nature of lossy Bloch states in polaritonic photonic crystals,” Phys. Rev. B 69, 195111 (2004). [CrossRef]
  31. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  32. A. P. Seyranian, E. Lund, and N. Olhoff, “Multiple eigenvalues in structural optimization problems,” Struct. Optim. 8, 207–227 (1994). [CrossRef]
  33. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidisc. Optim. 33, 401–424 (2007). [CrossRef]
  34. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002). [CrossRef]
  35. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008). [CrossRef]
  36. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20, 13108–13114 (2012). [CrossRef]
  37. F. D. Nunes, T. C. Vasconcelos, M. Bezerra, and J. Weiner, “Electromagnetic energy density in dispersive and dissipative media,” J. Opt. Soc. Am. B 28, 1544–1552 (2011). [CrossRef]
  38. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited