OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A10–A18

Are Gaussian spectra a viable perceptual assumption in color appearance?

Yoko Mizokami and Michael A. Webster  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A10-A18 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Natural illuminant and reflectance spectra can be roughly approximated by a linear model with as few as three basis functions, and this has suggested that the visual system might construct a linear representation of the spectra by estimating the weights of these functions. However, such models do not accommodate nonlinearities in color appearance, such as the Abney effect. Previously, we found that these nonlinearities are qualitatively consistent with a perceptual inference that stimulus spectra are instead roughly Gaussian, with the hue tied to the inferred centroid of the spectrum [ J. Vision 6(9), 12 (2006)]. Here, we examined to what extent a Gaussian inference provides a sufficient approximation of natural color signals. Reflectance and illuminant spectra from a wide set of databases were analyzed to test how well the curves could be fit by either a simple Gaussian with three parameters (amplitude, peak wavelength, and standard deviation) versus the first three principal component analysis components of standard linear models. The resulting Gaussian fits were comparable to linear models with the same degrees of freedom, suggesting that the Gaussian model could provide a plausible perceptual assumption about stimulus spectra for a trichromatic visual system.

© 2012 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Color in natural or complex scenes

Original Manuscript: August 25, 2011
Manuscript Accepted: October 2, 2011
Published: November 23, 2011

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Yoko Mizokami and Michael A. Webster, "Are Gaussian spectra a viable perceptual assumption in color appearance?," J. Opt. Soc. Am. A 29, A10-A18 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Bonnardel and L. T. Maloney, “Daylight, biochrome surfaces, and human chromatic response in the Fourier domain,” J. Opt. Soc. Am. A 17, 677-686 (2000). [CrossRef]
  2. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673-1683 (1986). [CrossRef] [PubMed]
  3. W. S. Stiles, G. Wyszecki, and N. Ohta, “Counting metameric object-color stimuli using frequency-limited spectral reflectance functions,” J. Opt. Soc. Am. 67, 779-784 (1977). [CrossRef]
  4. A. Hurlbert, “Computational models of color constancy,” in Perceptual Constancies, V.Walsh and J.J.Kulikowski, eds. (Cambridge Univ., 1998), pp. 283-322.
  5. L. T. Maloney, “Physics-based approaches to modeling surface color perception,” in Color Vision: From Genes to Perception, K.R.Gegenfurtner and L.T.Sharpe, eds. (Cambridge Univ., 1999), pp. 387-416.
  6. D. H. Marimont and B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905-1913 (1992). [CrossRef] [PubMed]
  7. J. L. Dannemiller, “Spectral reflectance of natural objects: how many basis functions are necessary?” J. Opt. Soc. Am. A 9, 507-515 (1992). [CrossRef]
  8. S. M. Nascimento, D. H. Foster, and K. Amano, “Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes,” J. Opt. Soc. Am. A 22, 1017-1022 (2005). [CrossRef]
  9. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318-322(1989). [CrossRef]
  10. D. H. Foster, “Color constancy,” Vision Res. 51, 674-700 (2011). [CrossRef]
  11. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Ann. Rev. Psychol. 59, 143-166 (2008). [CrossRef]
  12. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. London B 360, 1329-1346 (2005). [CrossRef]
  13. M. D'Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662-1672 (1986). [CrossRef] [PubMed]
  14. J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637-640 (2002). [CrossRef] [PubMed]
  15. D. I. A. MacLeod and J. Golz, “A computational analysis of colour constancy,” in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford University, 2003), pp. 205-242.
  16. Y. Mizokami, J. S. Werner, M. A. Crognale, and M. A. Webster, “Nonlinearities in color coding: compensating color appearance for the eye's spectral sensitivity,” J. Vision 6(9), 12(2006). [CrossRef]
  17. S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984). [CrossRef] [PubMed]
  18. W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. 1, 365-372 (1984). [CrossRef]
  19. R. D. Pridmore, “Effect of purity on hue (Abney effect) in various conditions,” Color Res. Appl. 32, 25-39 (2007). [CrossRef]
  20. W. de W. Abney, “On the change in hue of spectrum colors by dilution with white light,” Proc. R. Soc. London Ser. A 83, 120-127 (1909). [CrossRef]
  21. M. Ayama, T. Nakatsue, and P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000 Td,” J. Opt. Soc. Am. A 4, 1136-1144 (1987). [CrossRef] [PubMed]
  22. T. D. Kulp and K. Fuld, “The prediction of hue and saturation for non-spectral lights,” Vision Res. 35, 2967-2983 (1995). [CrossRef] [PubMed]
  23. L. T. Maloney, “The importance of realistic models of surface and light in the study of human color vision,” in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford University, 2003), pp. 243-246.
  24. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychonom. Sci. 1, 369-370 (1964).
  25. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031-1040 (1964). [CrossRef]
  26. O. Kohonen, J. Parkkinen, and T. Jääskeläinen, “Databases for spectral color science,” Color Res. Appl. 31, 381-390 (2006). [CrossRef]
  27. “Spectral database, University of Joensuu Color Group,” http://spectral.joensuu.fi/.
  28. “Cambridge database of natural spectra,” http://vision.psychol.cam.ac.uk/spectra/.
  29. “Standard object color spectra database for colour reproduction evaluation (SOCS), TR X 0012:2004 (ISO/TR 16066:2003),” Japanese Standards Association.
  30. S. M. Nascimento, F. P. Ferreira, and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484-1490 (2002). [CrossRef]
  31. D. H. Foster, S. M. Nascimento, and K. Amano, “Information limits on neural identification of colored surfaces in natural scenes,” Visual Neurosci. 21, 331-336 (2004). [CrossRef]
  32. M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213-233 (2007). [CrossRef] [PubMed]
  33. D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433-1448 (1992). [CrossRef] [PubMed]
  34. E. J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vision Res. 35, 239-254 (1995). [CrossRef] [PubMed]
  35. S. M. Nascimento and D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. Biol. Sci. 264, 1395-1402 (1997). [CrossRef] [PubMed]
  36. M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694-698 (1995). [CrossRef] [PubMed]
  37. A. D. Logvinenko, “An object-color space,” J. Vision 9(11), 5 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited