OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A128–A132

Feature binding of a continuously changing object

Para Kang and Steven K. Shevell  »View Author Affiliations


JOSA A, Vol. 29, Issue 2, pp. A128-A132 (2012)
http://dx.doi.org/10.1364/JOSAA.29.00A128


View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Consider a feature of a stimulus (such as color, luminance, or spatial frequency) that changes over time along a continuum. When a second stimulus is briefly pulsed with the same feature value as the first stimulus, the two stimuli are not perceived to match. Instead, the continuously changing stimulus is perceived to be further ahead on the feature continuum than the pulsed stimulus [Nat. Neurosci. 3, 489 (2000)]. This shift is quantified by the amount of time ahead on the changing continuum, which is different for various types of features. A basic question is how our percepts are affected when an object has two continuously changing features (such as color and orientation) with different magnitudes of time ahead. This was addressed using a bar continuously changing in both color and orientation. Even though the two features were part of the same object, each feature maintained a distinctly different time ahead. This implies that observers perceived at each moment a combination of color and orientation that never was presented to the eye.

© 2012 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Color sensitivity and appearance

History
Original Manuscript: September 6, 2011
Revised Manuscript: November 19, 2011
Manuscript Accepted: November 21, 2011
Published: January 19, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Para Kang and Steven K. Shevell, "Feature binding of a continuously changing object," J. Opt. Soc. Am. A 29, A128-A132 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-2-A128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. James, A Pluralistic Universe: Hibbert Lectures at Manchester College on the Present Situation in Philosophy (Longmans, Green, 1909), pp. 207–208.
  2. A. L. Roskies, “The binding problem,” Neuron 24, 7–9 (1999). [CrossRef]
  3. M. S. Livingstone and D. H. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988). [CrossRef]
  4. D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991). [CrossRef]
  5. S. Zeki, A Vision of the Brain (Blackwell, 1993).
  6. A. Treisman and H. Schmidt, “Illusory conjunctions in the perception of objects,” Cogn. Psychol. 14, 107–141 (1982). [CrossRef]
  7. A. Treisman and G. Gelade, “A feature-integration theory of attention,” Cogn. Psychol. 12, 97–136 (1980). [CrossRef]
  8. S. W. Hong and S. K. Shevell, “Color-binding errors during rivalrous suppression of form,” Psychol. Sci. 20, 1084–1091 (2009). [CrossRef]
  9. B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).
  10. P. H. Schiller and J. G. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,” J. Neurophysiol. 41, 788–797 (1978).
  11. E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiol. 330, 125–143 (1982).
  12. K. Nakamura, K. Matsumoto, A. Mikami, and K. Kubota, “Visual response properties of single neurons in the temporal pole of behaving monkeys,” J. Neurophysiol. 71, 1206–1221 (1994).
  13. M. T. Schmolesky, Y. Wang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, “Signal timing across the macaque visual system,” J. Neurophysiol. 79, 3272–3278 (1998).
  14. V. A. Lamme and P. R. Roelfsema, “The distinct modes of vision offered by feedforward and recurrent processing,” Trends Neurosci. 23, 571–579 (2000). [CrossRef]
  15. P. Lennie, “The physiological basis of variations in visual latency,” Vis. Res. 21, 815–824 (1981). [CrossRef]
  16. J. H. R. Maunsell and J. R. Gibson, “Visual response latencies in striate cortex of the macaque monkey,” J. Neurophysiol. 68, 1332–1344 (1992).
  17. K. Moutoussis and S. Zeki, “A direct demonstration of perceptual asynchrony in vision,” Proc. R. Soc. B 264, 393–399(1997). [CrossRef]
  18. K. Moutoussis and S. Zeki, “Functional segregation and temporal hierarchy of the visual perceptive systems,” Proc. R. Soc. B 264, 1407–1414 (1997). [CrossRef]
  19. S. Zeki and K. Moutoussis, “Temporal hierarchy of the visual perceptive systems in the Mondrian world,” Proc. R. Soc. B 264, 1415–1419 (1997). [CrossRef]
  20. J. L. Barbur, J. Wolf, and P. Lennie, “Visual processing levels revealed by response latencies to changes in different visual attributes,” Proc. R. Soc. B 265, 2321–2325 (1998). [CrossRef]
  21. D. H. Arnold, C. W. Clifford, and P. Wenderoth, “Asynchronous processing in vision: color leads motion,” Curr. Biol. 11, 596–600 (2001). [CrossRef]
  22. L. Pisella, M. Arzi, and Y. Rossetti, “The timing of color and location processing in the motor context,” Exp. Brain Res. 121, 270–276 (1998). [CrossRef]
  23. C. W. G. Clifford, D. H. Arnold, and J. Pearson, “A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation,” Vision Res. 43, 2245–2253 (2003). [CrossRef]
  24. D. M. MacKay, “Perceptual stability of a stroboscopically lit visual field containing self-luminous objects,” Nature 181, 507–508 (1958). [CrossRef]
  25. R. Nijhawan, “Motion extrapolation in catching,” Nature 370, 256–257 (1994). [CrossRef]
  26. G. Purushothaman, S. S. Patel, H. E. Bedell, and H. Ogmen, “Moving ahead through differential visual latency,” Nature 396, 424 (1998). [CrossRef]
  27. D. Whitney and I. Murakami, “Latency difference, not spatial extrapolation,” Nat. Neurosci. 1, 656–657 (1998). [CrossRef]
  28. T. J. Gawne, T. W. Kjaer, and B. J. Richmond, “Latency: another potential code for feature binding in striate cortex,” J. Neurophysiol. 76, 1356–1360 (1996).
  29. J. H. R. Maunsell, G. M. Ghose, J. A. Assad, C. J. McAdams, C. E. Boudreau, and B. D. Noerager, “Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys,” Vis. Neurosci. 16, 1–14 (1999).
  30. S. S. Patel, H. Ogmen, H. E. Bedell, and V. Sampath, “Flash-lag effect: differential latency, not postdiction,” Science 290, 1051 (2000). [CrossRef]
  31. B. Khurana and R. Nijhawan, “Extrapolation or attention shift: reply to Baldo and Klein,” Nature 378, 566 (1995). [CrossRef]
  32. E. Brenner and J. B. J. Smeets, “Motion extrapolation is not responsible for the flash-lag effect,” Vis. Res. 40, 1645–1648 (2000). [CrossRef]
  33. D. M. Eagleman and T. J. Sejnowski, “Motion integration and postdiction in visual awareness,” Science 287, 2036–2038 (2000). [CrossRef]
  34. D. Whitney, I. Murakami, and P. Cavanagh, “Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli,” Vis. Res. 40, 137–149 (2000). [CrossRef]
  35. R. Nijhawan, “Visual prediction: psychophysics and neurophysiology of compensation for time delays,” Behav. Brain Sci. 31, 179–239 (2008).
  36. B. Sheth, R. Nijhawan, and S. Shimojo, “Changing objects lead briefly pulsed ones,” Nat. Neurosci. 3, 489–495 (2000). [CrossRef]
  37. B. J. Scholl, “Objects and attention: the state of the art,” Cognition 80, 1–46 (2001). [CrossRef]
  38. J. Duncan, “Selective attention and the organization of visual information,” J. Exp. Psychol. Gen. 113, 501–517 (1984). [CrossRef]
  39. R. Egly, J. Driver, and R. Rafal, “Shifting visual attention between objects and locations: evidence for normal and parietal lesion subjects,” J. Exp. Psychol. Gen. 123, 161–177 (1994). [CrossRef]
  40. C. McCollough, “Color adaptation of edge-detectors in the human visual system,” Science 149, 1115–1116 (1965). [CrossRef]
  41. A. O. Holcombe and P. Cavanagh, “Early binding of feature pairs for visual perception,” Nat. Neurosci. 4, 127–128 (2001). [CrossRef]
  42. A. O. Holcombe and P. Cavanagh, “Independent, synchronous access to color and motion features,” Cognition 107, 552–580 (2008). [CrossRef]
  43. L. C. Sincich and J. C. Horton, “The circuitry of V1 and V2: integration of color, form, and motion,” Annu. Rev. Neurosci. 28, 303–326 (2005). [CrossRef]
  44. T. Yoshioka and B. M. Dow, “Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 71–88 (1996). [CrossRef]
  45. E. N. Johnson, M. J. Hawken, and R. Shapley, “The orientation selectivity of color-responsive neurons in macaque V1,” J. Neurosci. 28, 8096–8106 (2008). [CrossRef]
  46. S. A. Engel, “Adaptation of oriented and unoriented color-selective neurons in human visual areas,” Neuron 45, 613–623(2005). [CrossRef]
  47. K. Seymour, C. W. Clifford, N. K. Logothetis, and A. Bartels, “Coding and binding of color and form in visual cortex,” Cereb. Cortex 20, 1946–1954 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited