OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A152–A156

Contrast adaptation reveals increased organizational complexity of chromatic processing in the visual evoked potential

Chad S. Duncan, Eric J. Roth, Yoko Mizokami, Kyle C. McDermott, and Michael A. Crognale  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A152-A156 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Results from psychophysics and single-unit recordings suggest that color vision comprises multiple stages of processing. Postreceptoral channels appear to consist of both a stage of broadly tuned opponent channels that compare cone signals and a subsequent stage, which includes cells tuned to many different directions in color space. The chromatic visual evoked potential (crVEP) has demonstrated chromatic processing selective for cardinal axes of color space. However, crVEP evidence for higher-order color mechanisms is lacking. The present study aimed to assess the contribution of lower- and higher-order color mechanisms to the crVEP by using chromatic contrast adaptation. The results reveal the presence of mechanisms tuned to intermediate directions in color space in addition to those tuned to the fundamental cardinal axes.

© 2012 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Retinal and cortical color processing

Original Manuscript: September 2, 2011
Revised Manuscript: November 22, 2011
Manuscript Accepted: November 25, 2011
Published: January 25, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Chad S. Duncan, Eric J. Roth, Yoko Mizokami, Kyle C. McDermott, and Michael A. Crognale, "Contrast adaptation reveals increased organizational complexity of chromatic processing in the visual evoked potential," J. Opt. Soc. Am. A 29, A152-A156 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993). [CrossRef]
  2. R. L. De Valois, J. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966). [CrossRef]
  3. A. M. Derrington, J. Krauskopf, and P. Lenni, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  4. J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986). [CrossRef]
  5. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef]
  6. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994). [CrossRef]
  7. K. Ichiro, “Aftereffect of contrast adaptation to a chromatic notched-noise stimulus,” J. Opt. Soc. Am. A 24, 1858–1872 (2007). [CrossRef]
  8. Y. Mizokami and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004).
  9. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  10. S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004). [CrossRef]
  11. J. Krauskopf, D. R. Williams, and D. W. Heely, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982). [CrossRef]
  12. S. A. Engel and C. S. Furmanski, “Selective adaptation to color contrast in human primary visual cortex,” J. Neurosci. 21, 3949–3954 (2001).
  13. A. Hanazawa, H. Komatsu, and I. Murakami, “Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey,” Eur. J. Neurosci. 12, 1753–1763 (2000). [CrossRef]
  14. D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997).
  15. T. Matsumora, K. Koida, and H. Komatsu, “Relationship between color discrimination and neural responses in inferior temporal cortex of monkey,” J. Neurophysiol. 100, 3361–3374 (2008). [CrossRef]
  16. P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of Macaque,” J. Neurosci. 10, 649–669 (1990).
  17. H. Lim, Y. Wang, Y. Xiao, M. Hu, and D. J. Felleman, “Organization of hue selectivity in macaque V2 thin stripes,” J. Neurophysiol. 102, 2603–2615 (2009). [CrossRef]
  18. C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008). [CrossRef]
  19. J. Rabin, E. Switkes, M. A. Crognlae, M. E. Schneck, and A. J. Adams, “Visual evoked potentials in three-dimensional color space: correlates of spatiochromatic processing,” Vision Res. 34, 2657–2671 (1994). [CrossRef]
  20. C. Gerth, P. B. Delahunt, M. A. Crognale, and J. S. Werner, “Topography of the chromatic pattern-onset VEP,” J. Vision 3, 171–182 (2003). [CrossRef]
  21. N. Accornero, B. Gregori, E. Galié, A. De Feo, and R. Agnesi, “A new color VEP procedure discloses asymptomatic visual impairments in optic neuritis and glaucoma suspects,” Acta Neurologica Scandinavica 102, 258–263 (2000). [CrossRef]
  22. M. A. Crognale, J. Rabin, E. Switkes, and A. J. Adams, “Selective loss of S pathway sensitivity in central serous choroidopathy revealed by spatio-chromatic visual evoked cortical potentials (VECP),” Color Vision Deficiencies XI, Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, 1993), pp. 229–239. [CrossRef]
  23. V. Porciatti, E. Bartolo, M. Nardi, and A. Fiorentini, “Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study,” Vision Res. 37, 1975–1987 (1997). [CrossRef]
  24. M. A. Crognale, E. Switkes, J. Rabin, M. E. Schneck, G. Haegerström-Portnoy, and A. J. Adams, “Application of the spatio-chromatic visual evoked potential to detection of congenital and acquired color deficiencies,” J. Opt. Soc. Am. 10, 1818–1825 (1993). [CrossRef]
  25. M. E. Schneck, B. F. Fortune, M. A. Crognale, E. Switkes, and A. J. Adams, “Influence of blood glucose level on chromatic VEP’s in type I diabetes,” in Vision Science and its Applications, Vol. 1, 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 38–42 (1996).
  26. M. E. Schneck, E. Lee, B. F. Fortune, E. Switkes, M. A. Crognale, and A. J. Adam, “Spatio-chromatic VEPs in recovered optic neuritis and multiple sclerosis,” Color Vision Deficiencies XIII, Documenta Ophthalmologica Proceedings Series (Kluwer, Dordrecht, 1997), pp. 179–185.
  27. C. M. Suttle and R. Lloyd, “Chromatic and achromatic transient VEPs in adults with Down syndrome.” Ophthal. Physiol. Opt. 25, 501–513 (2005). [CrossRef]
  28. M. Y. Boon, C. M. Suttle, and S. J. Dain, “Transient VEP and psychophysical chromatic contrast thresholds in children and adults.” Vision Res. 47, 2124–2133 (2007). [CrossRef]
  29. J. J. Brecelj, M. M. Štrucl, I. I. Zidar, and M. M. Tekavčič-Pompe, “Pattern ERG and VEP maturation in schoolchildren.” Clinical Neurophysiology 113, 1764–1770 (2002). [CrossRef]
  30. M. A. Crognale, “Development, maturation, and aging of chromatic visual pathways: VEP results.” J. Vision 2, 438–450 (2002). [CrossRef]
  31. M. A. Crognale, J. P. Kelly, S. Chang, A. H. Weiss, and D. Y. Teller, “Development of pattern visual evoked potentials: Longitudinal measurements in human infants.” Optom. Vis. Sci. 74, 808–815 (1997). [CrossRef]
  32. M. A. Crognale, J. P. Kelly, A. Weiss, and D. Y. Teller, “Development of the spatio-chromatic visual evoked potential (VEP): A longitudinal study.” Vision Res. 38, 3283–3292 (1998). [CrossRef]
  33. J. W. Page and M. A. Crognale, “Differential aging of chromatic and achromatic visual pathways: behavior and electrophysiology.” Vision Res. 45, 1481–1489 (2005). [CrossRef]
  34. M. Pompe, B. Kranjc, and J. Brecelj, “Visual evoked potentials to red-green stimulation in schoolchildren.” Vis. Neurosci. 23, 447–451 (2006).
  35. C. M. Suttle, S. J. Anderson, and F. A. Graham, “A longitudinal study of visual evoked responses to tritan stimuli in human infants.” Optom. Vis. Sci. 74, 717–725 (1997). [CrossRef]
  36. M. M. Tekavčič-Pompe, B. S. Kranjc, and J. J. Brecelj, “The study of chromatic and achromatic VEP in the first year of life,” Acta Ophthalm. 87, 0 (2009). [CrossRef]
  37. S. Anstis and P. Cavanagh, “A minimum motion technique for judging equiluminance,” inColour Vision (J. D. Mollon and L. T. Sharp, eds.) (Academic, London, 1983) pp. 155–166.
  38. E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?,” Vision Res. 39, 1823–1831 (1999). [CrossRef]
  39. T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003). [CrossRef]
  40. E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. G. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10, 25 (2010). [CrossRef]
  41. S. Zeki, “The representation of colours in the cerebral cortex,” Nature 284, 412–418 (1980). [CrossRef]
  42. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
  43. S. G. Solomon and P. L. Lennie, “Chromatic gain controls in visual cortical neurons.” J. Neurosci. 25, 4779–4792 (2005). [CrossRef]
  44. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited