OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A157–A164

Cardinal axes are not independent in color discrimination

Marina V. Danilova and John D. Mollon  »View Author Affiliations


JOSA A, Vol. 29, Issue 2, pp. A157-A164 (2012)
http://dx.doi.org/10.1364/JOSAA.29.00A157


View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measured chromatic discrimination under conditions where the target fields could be distinguished only by the ratio of excitation of the long- (L) and middle-wavelength (M) cones. The excitation level of the short-wavelength (S) cones was varied in the experiments, although for any given measurement the S-cone excitation was common to the two target fields and could not be directly used for discrimination. Adaptation was maintained by a steady neutral background metameric to Illuminant D65. Thresholds varied substantially and systematically with the S-cone level of the target probes, but in a complex way: when the ratio of LM cone excitation was low, an increase in S-cone excitation reduced the thresholds, but when the LM ratio was higher, an increase in S-cone excitation raised the thresholds. To account for the pattern of results, we postulate a neural channel that draws synergistic inputs from L and S cones and an opposed input from M cones. The proposed channel has a compressive response function and is most sensitive at the point set by the steady background.

© 2012 Optical Society of America

ToC Category:
Chromatic discrimination

History
Original Manuscript: September 1, 2011
Manuscript Accepted: October 18, 2011
Published: January 25, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Marina V. Danilova and John D. Mollon, "Cardinal axes are not independent in color discrimination," J. Opt. Soc. Am. A 29, A157-A164 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-2-A157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  2. B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retin. Eye Res. 29, 622–639 (2010). [CrossRef]
  3. D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994). [CrossRef]
  4. S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Ann. Rev. Neurosci. 23, 127–153 (2000). [CrossRef]
  5. P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997). [CrossRef]
  6. S. H. C. Hendry and T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science 264, 575–577 (1994). [CrossRef]
  7. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. 199, 533–547 (1968).
  8. J. D. Mollon, “‘Cherries among the leaves’: the evolutionary origins of colour vision,” in Colour Perception: Philosophical, Psychological, Artistic, and Computational Perspectives, B. Funt, ed. (Oxford University, 2000), pp. 10–30.
  9. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  10. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  11. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992). [CrossRef]
  12. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992). [CrossRef]
  13. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  14. G. Wyszecki, and W. S. Stiles, Color Science, 2nd ed. (Wiley, 1982).
  15. G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” Br. J. Math. Stat. Psychol. 18, 1–10 (1965). [CrossRef]
  16. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994). [CrossRef]
  17. G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–516 (1954).
  18. J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979). [CrossRef]
  19. E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. 10, 545–553 (1993). [CrossRef]
  20. K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).
  21. A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11 (Suppl. 3), 51–63 (1971). [CrossRef]
  22. R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).
  23. M. D. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10, 4 (2010). [CrossRef]
  24. M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories” (submitted).
  25. K. Knoblauch and S. K. Shevell, “Relating cone signals to color appearance: failure of monotonicity in yellow/blue,” Vis. Neurosci. 18, 901–906 (2001). [CrossRef]
  26. R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993). [CrossRef]
  27. F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).
  28. A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986). [CrossRef]
  29. J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.
  30. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying s-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  31. D. M. Dacey, “Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways,” in The Cognitive Neurosciences, M. S. Gazzaniga, ed. (MIT, 2004), pp. 281–301.
  32. D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003). [CrossRef]
  33. G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010). [CrossRef]
  34. D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011). [CrossRef]
  35. J. D. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited