OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A200–A208

Predicting frequency of metamerism in natural scenes by entropy of colors

Gaoyang Feng and David H. Foster  »View Author Affiliations


JOSA A, Vol. 29, Issue 2, pp. A200-A208 (2012)
http://dx.doi.org/10.1364/JOSAA.29.00A200


View Full Text Article

Enhanced HTML    Acrobat PDF (513 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Estimating the frequency of metameric surfaces in natural scenes usually requires many comparisons of surface colors to determine which are visually indistinguishable under one light but distinguishable—by a certain criterion degree—under another. The aim here was to test the predictive power of a simpler approach to estimation based on the entropy of colors. In simulations with 50 hyperspectral images of natural scenes, the logarithm of the observed relative frequency of metamerism in each scene under two successive daylights was regressed on combinations of the estimated Shannon differential entropies of the colors of the scene under the same two daylights. The regression was strong, and it remained so when restricted to the estimated differential entropy under just the first daylight, providing that the criterion degree of metamerism was limited. When the criterion degree was made more extreme, however, the restricted regression failed. A possible explanation of the predictive power of differential entropy is briefly considered.

© 2012 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:
Color in natural or complex scenes

History
Original Manuscript: September 1, 2011
Revised Manuscript: November 15, 2011
Manuscript Accepted: November 17, 2011
Published: January 26, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Gaoyang Feng and David H. Foster, "Predicting frequency of metamerism in natural scenes by entropy of colors," J. Opt. Soc. Am. A 29, A200-A208 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-2-A200


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, 1967).
  2. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  3. R. W. G. Hunt, Measuring Colour, 3rd ed. (Fountain Press, 1998).
  4. CIE, “Colorimetry,” 3rd ed., CIE Publication 15:2004 (CIE Central Bureau, 2004).
  5. T. Troscianko, C. P. Benton, P. G. Lovell, D. J. Tolhurst, and Z. Pizlo, “Camouflage and visual perception,” Phil. Trans. R. Soc. B 364, 449–461 (2009). [CrossRef]
  6. D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006). [CrossRef]
  7. R. G. Kuehni, “Metamerism, exact and approximate,” Color Res. Appl. 8, 192 (1983). [CrossRef]
  8. T. Wachtler, T.-W. Lee, and T. J. Sejnowski, “Chromatic structure of natural scenes,” J. Opt. Soc. Am. A 18, 65–77 (2001). [CrossRef]
  9. D. H. Foster, I. Marín-Franch, K. Amano, and S. M. C. Nascimento, “Approaching ideal observer efficiency in using color to retrieve information from natural scenes,” J. Opt. Soc. Am. A 26, B14–B24 (2009). [CrossRef]
  10. J. J. Clark and S. Skaff, “A spectral theory of color perception,” J. Opt. Soc. Am. A 26, 2488–2502 (2009). [CrossRef]
  11. I. Marín-Franch and D. H. Foster, “Number of perceptually distinct surface colors in natural scenes,” J. Vision 10(9), 9 (2010). [CrossRef]
  12. CIE, “A colour appearance model for colour management systems: CIECAM02,” CIE Publication 159:2004 (CIE Central Bureau, 2004).
  13. T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley, 2006).
  14. S. M. C. Nascimento, F. P. Ferreira, and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002). [CrossRef]
  15. J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008). [CrossRef]
  16. C.-J. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27, 49–58 (2002). [CrossRef]
  17. M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006). [CrossRef]
  18. M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834 (2008). [CrossRef]
  19. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001). [CrossRef]
  20. G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002). [CrossRef]
  21. P.-L. Sun and J. Morovic, “Inter-relating colour difference metrics,” in Proceedings of Tenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications (Society for Imaging Science and Technology, 2002) pp. 55–60.
  22. S. M. C. Nascimento, D. H. Foster, and K. Amano, “Psychophysical estimates of the number of spectral-reflectance basis functions needed to reproduce natural scenes,” J. Opt. Soc. Am. A 22, 1017–1022 (2005). [CrossRef]
  23. A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Phys. Rev. E 69, 066138 (2004). [CrossRef]
  24. L. F. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy of a random vector,” Prob. Peredachi Inf. 23, 9–16 (1987).
  25. M. N. Goria, N. N. Leonenko, V. V. Mergel, and P. L. Novi Inverardi, “A new class of random vector entropy estimators and its applications in testing statistical hypotheses,” J. Nonparametric Stat. 17, 277–297 (2005). [CrossRef]
  26. I. Marín-Franch and D. H. Foster, “Estimating information from color signals: an application to digital cameras and natural scenes,” IEEE Trans. Pattern Anal. Mach. Intell. (submitted).
  27. D. B. Montgomery and D. G. Morrison, “A note on adjusting R2,” J. Finance 28, 1009–1013 (1973). [CrossRef]
  28. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, 1993).
  29. J. Morovic and M. R. Luo, “The fundamentals of gamut mapping: a survey,” J. Imaging Sci. Technol. 45, 283–290 (2001).
  30. A. M. Bakke, I. Farup, and J. Y. Hardeberg, “Evaluation of algorithms for the determination of color gamut boundaries,” J. Imaging Sci. Technol. 54, 050502 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited