OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A223–A232

Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings

Barry B. Lee, Robert M. Shapley, Michael J. Hawken, and Hao Sun  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A223-A232 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Receptive fields of midget ganglion cells and parvocellular lateral geniculate nucleus (LGN) neurons show color-opponent responses because they receive antagonistic input from the middle- and long-wavelength sensitive cones. It has been controversial as to whether this opponency can derive from random connectivity; if receptive field centers of cells near the fovea are cone-specific due to midget morphology, this would confer some degree of color opponency even with random cone input to the surround. A simple test of this mixed surround hypothesis is to compare spatial frequency tuning curves for luminance gratings and gratings isolating cone input to the receptive field center. If tuning curves for luminance gratings were bandpass, then with the mixed surround hypothesis tuning curves for gratings isolating the receptive field center cone class should also be bandpass, but to a lesser extent than for luminance. Tuning curves for luminance, chromatic, and cone-isolating gratings were measured in macaque retinal ganglion cells and LGN cells. We defined and measured a bandpass index to compare luminance and center cone-isolating tuning curves. Midget retinal ganglion cells and parvocellular LGN cells had bandpass indices between 0.1 and 1 with luminance gratings, but the index was usually near 1 (meaning low-pass tuning) when the receptive field center cone class alone was modulated. This is strong evidence for a considerable degree of cone-specific input to the surround. A fraction of midget and parvocellular cells showed evidence of incomplete specificity. Fitting the data with receptive field models revealed considerable intercell variability, with indications in some cells of a more complex receptive structure than a simple difference of Gaussians model.

© 2012 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology

ToC Category:
Retinal and cortical color processing

Original Manuscript: September 9, 2011
Revised Manuscript: November 2, 2011
Manuscript Accepted: November 29, 2011
Published: January 26, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Barry B. Lee, Robert M. Shapley, Michael J. Hawken, and Hao Sun, "Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings," J. Opt. Soc. Am. A 29, A223-A232 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. DeValois, “Analysis and coding of color vision in the primate visual system,” Cold Spring Harb. Symp. Quant. Biol. 30, 567–579 (1965). [CrossRef]
  2. B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retin. Res. 29, 622–639 (2010). [CrossRef]
  3. R. C. Reid and R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992). [CrossRef]
  4. R. C. Reid and R. M. Shapley, “Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus,” J. Neurosci. 22, 6158–6175 (2002).
  5. T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  6. S. L. Polyak, The Retina (University of Chicago, 1941).
  7. B. B. Boycott and J. E. Dowling, “Organization of the primate retina: light microscopy,” Phil. Trans. R. Soc. Lond. B 255, 109–184 (1969). [CrossRef]
  8. E. Kaplan and R. Shapley, “The origin of the S (slow) potential in the mammalian lateral geniculate nucleus,” Exp. Brain Res. 55, 111–116 (1984). [CrossRef]
  9. B. B. Lee, V. Virsu, and O. D. Creutzfeldt, “Linear signal transmission from prepotentials to cells in the macaque lateral geniculate nucleus,” Exp. Brain Res. 52, 50–56 (1983). [CrossRef]
  10. W. Paulus and A. Kröger-Paulus, “A new concept of retinal colour coding,” Vis. Res. 23, 529–540 (1983). [CrossRef]
  11. P. Lennie, P. W. Haake, and D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT, 1991), pp. 71–82.
  12. B. B. Lee, J. Kremers, and T. Yeh, “Receptive fields of primate ganglion cells studied with a novel technique,” Vis. Neurosci. 15, 161–175 (1998). [CrossRef]
  13. P. R. Martin, B. B. Lee, A. J. White, S. G. Solomon, and L. Rüttiger, “Chromatic sensitivity of ganglion cells in peripheral primate retina,” Nature 410, 933–936 (2001). [CrossRef]
  14. E. A. Benardete and E. Kaplan, “The receptive field of the primate P retinal ganglion cell I: linear dynamics,” Vis. Neurosci. 14, 169–186 (1997). [CrossRef]
  15. J. D. Crook, M. B. Manookin, O. S. Packer, and D. M. Dacey, “Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina,” J. Neurosci. 31, 1762–1772 (2011). [CrossRef]
  16. G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010). [CrossRef]
  17. S. G. Solomon, B. B. Lee, A. J. White, L. Ruttiger, and P. R. Martin, “Chromatic organization of ganglion cell receptive fields in the peripheral retina,” J. Neurosci. 25, 4527–4539 (2005). [CrossRef]
  18. B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).
  19. B. B. Lee, V. Virsu, and A. Elepfandt, “Phase of responses to moving gratings in cells of the cat retina and lateral geniculate nucleus,” J. Neurophysiol. 45, 807–817 (1981).
  20. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  21. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996). [CrossRef]
  22. E. G. Merrill and A. Ainsworth, “Glass-coated platinum-plated tungsten microelectrodes,” Med. Biol. Eng. 10, 662–672 (1972). [CrossRef]
  23. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).
  24. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  25. K. R. Dobkins, A. Thiele, and T. D. Albright, “Comparison of red-green equiluminance points in humans and macaques: evidence for different L∶M cone ratios between species,” J. Opt. Soc. Am. A 17, 545–556 (2000). [CrossRef]
  26. C. Enroth-Cugell, J. G. Robson, D. E. Schweitzer-Tong, and A. B. Watson, “Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation,” J. Physiol. 341, 279–307 (1983).
  27. L. J. Croner and E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vis. Res. 35, 7–24 (1995). [CrossRef]
  28. T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
  29. R. L. DeValois and K. K. DeValois, Spatial Vision., Oxford Psychology Series, D. E. Broadbent, ed. (Oxford University, 1988).
  30. P. Buzas, E. M. Blessing, B. A. Szmadja, and P. R. Martin, “Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias,” J. Neurosci. 26, 11148–11161 (2006). [CrossRef]
  31. P. R. Martin, E. M. Blessing, P. Buzas, B. A. Szmajda, and J. D. Forte, “Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys,” J. Physiol. 589, 2795–2812 (2011). [CrossRef]
  32. B. B. Lee, “Neural models and physiological reality,” Vis. Neurosci. 25, 231–241 (2008). [CrossRef]
  33. D. J. Calkins and P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996). [CrossRef]
  34. H. R. Joo, B. B. Peterson, T. J. Haun, and D. M. Dacey, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011). [CrossRef]
  35. H. Wässle, U. Grünert, P. R. Martin, and B. B. Boycott, “Color coding in the primate retina: predictions and constrants from anatomy,” in Structural and Functional Organization of the Neocortex. A Symposium in the Memory of Otto D. Creutzfeldt, B. Albowitz, K. Albus, U. Kuhnt, H. Ch. Nothdurft, and P. Wahle, eds. (Springer, 1994), pp. 94–104.
  36. O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989). [CrossRef]
  37. K. T. Mullen and F. A. Kingdom, “Losses in peripheral colour sensitivity predicted from “hit or miss” post-receptoral cone connections,” Vis. Res. 36, 1995–2000 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited