OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A275–A289

Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy

Janus J. Kulikowski, Ausra Daugirdiene, Athanasios Panorgias, Rytis Stanikunas, Henrikas Vaitkevicius, and Ian J. Murray  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A275-A289 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1790 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cone contrast remains constant, when the same object/background is seen under different illuminations—the von Kries rule [Shevell, Vis. Res. 18, 1649 (1978)]. Here we explore this idea using asymmetric color matching. We find that von Kries adaptation holds, regardless of whether chromatic constancy index is low or high. When illumination changes the stimulus luminance (reflectance), lightness constancy is weak and matching is dictated by object/background luminance contrast. When this contrast is masked or disrupted, lightness constancy mechanisms are more prominent. Thus von Kries adaptation is incompatible with lightness constancy, suggesting that cortical mechanisms must underlie color constancy, as expected from neurophysiological studies [Zeki, Nature 284, 412 (1980); Wild, Nature 313, 133 (1985)].

© 2012 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Color in natural or complex scenes

Original Manuscript: September 1, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: December 1, 2011
Published: January 30, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Janus J. Kulikowski, Ausra Daugirdiene, Athanasios Panorgias, Rytis Stanikunas, Henrikas Vaitkevicius, and Ian J. Murray, "Systematic violations of von Kries rule reveal its limitations for explaining color and lightness constancy," J. Opt. Soc. Am. A 29, A275-A289 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Judd, “Hue saturation and lightness of surface colors with chromatic illumination,” J. Opt. Soc. Am. 30, 2–32(1940). [CrossRef]
  2. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986). [CrossRef]
  3. J. M. Troost and C. M. de Weert, “Naming versus matching in color constancy,” Percept. Psychophys. 50, 591–602 (1991). [CrossRef]
  4. J. Mollon, “Monge—The Verriest lecture,” Vis. Neurosci. 23, 297–309 (2006). [CrossRef]
  5. D. H. Brainard, “Color constancy in the nearly natural image: 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998). [CrossRef]
  6. S. K. Shevell, “The dual role of chromatic backgrounds in colour perception,” Vis. Res. 18, 1649–1661 (1978). [CrossRef]
  7. D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. B115–121 (1994). [CrossRef]
  8. B. J. Craven and D. H. Foster, “An operational approach to colour constancy,” Vis. Res. 32, 1359–1366 (1992). [CrossRef]
  9. D. H. Foster, “Colour constancy,” Vis. Res. 51, 674–700 (2011). [CrossRef]
  10. F. A. A. Kingdom, “Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy [Invited Review],” Vis. Res. 51, 652–673(2011). [CrossRef]
  11. H. Wallach, “The perception of neutral colors,” Sci. Am. 208, 107–117 (1963). [CrossRef]
  12. E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991). [CrossRef]
  13. T. Wachtler, T. D. Albright, and T. J. Sejnowski, “Nonlocal interactions in color perception: Nonlinear processing of chromatic signals from remote inducers,” Vis. Res. 41, 1535–1546(2001). [CrossRef]
  14. I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).
  15. I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006). [CrossRef]
  16. S. Zeki, “Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).
  17. S. Zeki, “The representation of colours in the cerebral cortex,” Nature 284, 412–418 (1980). [CrossRef]
  18. D. J. McKeefry and S. Zeki, “The position and topography of the human colour centre as revealed by functional magnetic resonance imaging,” Brain 120, 2229–2242 (1997). [CrossRef]
  19. M. Kusunoki, K. Moutoussis, and S. Zeki, “Effect of background colors on the tuning of color-selective cells in monkey area V4,” J. Neurophysiol. 95, 3047–3059 (2006). [CrossRef]
  20. H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985). [CrossRef]
  21. V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993). [CrossRef]
  22. C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233–1249 (1978).
  23. E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” Neurophysiol. 91, 2501–2514 (2004). [CrossRef]
  24. B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006). [CrossRef]
  25. R. Shapley and M. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res 51, 701–717 (2011). [CrossRef]
  26. J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999). [CrossRef]
  27. M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).
  28. K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003). [CrossRef]
  29. S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Ann. Rev. Psychol. 59, 143–166 (2008). [CrossRef]
  30. E. H. Land and J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971). [CrossRef]
  31. J. J. McCann, “Lessons learned from Mondrians applied to real images and color gamuts,” in Proceedings of the IS&T/SID Seventh Color Imaging Conference (The Society for Imaging Science and Technology, 1999), pp. 1–8.
  32. R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005). [CrossRef]
  33. A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
  34. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  35. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  36. A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76–83 (2006). [CrossRef]
  37. M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005). [CrossRef]
  38. J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?,” Eye 12, 548–552 (1998). [CrossRef]
  39. J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002). [CrossRef]
  40. A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998). [CrossRef]
  41. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005). [CrossRef]
  42. C. van Trigt, “Illuminant dependence of von Kries type quotients,” Int. J. Comput. Vis. 61, 5–30 (2005). [CrossRef]
  43. S. M. C. Nascimento and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002). [CrossRef]
  44. J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vis. Res. 16, 1419–1431 (1976). [CrossRef]
  45. M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).
  46. J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vis. Res. 17, 653–656 (1977). [CrossRef]
  47. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260(1969).
  48. A. G. Robson and J. J. Kulikowski, “The effect of pattern adaptation on chromatic and chromatic visual evoked potentials,” Color Res. Appl. S26, S133–S135 (2001). [CrossRef]
  49. J. J. Kulikowski, “Limiting conditions of visual perception (in Polish: English translation),” Warszawa. Prace Instytutu Automatyki PAN 77, 1–133 (1969).
  50. Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49–59 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited