OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A337–A345

The Verriest Lecture: Color lessons from space, time and motion

Steven K. Shevell  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A337-A345 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2235 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time, or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time, and motion—color’s colleagues—reveal the richness of chromatic neural processing.

© 2012 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Verriest lecture

Original Manuscript: December 16, 2011
Manuscript Accepted: December 16, 2011
Published: February 1, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Steven K. Shevell, "The Verriest Lecture: Color lessons from space, time and motion," J. Opt. Soc. Am. A 29, A337-A345 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Wyszecki and W. S. Stiles, Color Science (2nd ed., Wiley, 1982).
  2. W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivites of the rods and cones,” Proc. R. Soc. Lond. Ser. B 127, 65–105 (1939).
  3. A. Stockman, D. I. A. MacLeod, and J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993). [CrossRef]
  4. V. C. Smith, R. W. Bowen, and J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vis. Res. 24, 653–660 (1984). [CrossRef]
  5. K. Uchikawa and M. Ikeda, “Color discrimination and appearance of short-duration, equal-luminance monochromatic lights,” J. Opt. Soc. Am. A 4, 1097–1103 (1987). [CrossRef]
  6. J. D. Mollon, S. Astell, and C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vis. Res. 32, 745–755 (1992). [CrossRef]
  7. A. Reitner, L. T. Sharpe, and E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vis. Res. 32, 179–185 (1992). [CrossRef]
  8. D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
  9. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
  10. S. K. Shevell, I. Holliday, and P. Whittle, “Two separate neural mechanisms of brightness induction,” Vis. Res. 32, 2331–2340 (1992). [CrossRef]
  11. H. Wallach, “Brightness constancy and the nature of achromatic colors,” J. Exp. Psychol. 38, 310–324 (1948). [CrossRef]
  12. E. G. Heinemann, “Simultaneous brightness induction as a function of inducing-and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955). [CrossRef]
  13. Controls eliminate the possibility that the null effect from the outer rings is explained by rings too weak or distant to affect brightness. The same outer rings do upset the brightness matches in conditions that eliminate the percept of a fused uniform surround (see Figs. 3 and 4 in [10]).
  14. M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, Original English translation, 1854; republished, 1967 (Van Nostrand, 1839).
  15. S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008). [CrossRef]
  16. R. O. Brown and D. I. A. Macleod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997). [CrossRef]
  17. M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002). [CrossRef]
  18. S. K. Shevell and J. Wei, “A central mechanism of chromatic contrast,” Vis. Res. 40, 3173–3180 (2000). [CrossRef]
  19. P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003). [CrossRef]
  20. P. Monnier and S. K. Shevell, “Chromatic induction from S-cone patterns,” Vis. Res. 44, 849–856 (2004). [CrossRef]
  21. S. K. Shevell and P. Monnier, “Color shifts from S-cone patterned backgrounds: Contrast sensitivity and spatial frequency selectivity,” Vis. Res. 45, 1147–1154 (2005). [CrossRef]
  22. M. G. Bloj, D. Kersten, and A. C. Hurlburt, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).
  23. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef]
  24. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994). [CrossRef]
  25. R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986). [CrossRef]
  26. A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis.Res. 36, 1391–1398 (1996). [CrossRef]
  27. A. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487 (2006).
  28. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990). [CrossRef]
  29. A. D’Antona and S. K. Shevell, “Induced temporal variation at frequencies not in the stimulus: Evidence for a neural nonlinearity,” J. Vision 9(3), 1–11 (2009). [CrossRef]
  30. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979). [CrossRef]
  31. J. H. Christiansen, A. D. D’Antona, and S. K. Shevell, “The neural pathways mediating color shifts induced by temporally varying light,” J. Vision 9(5), 1–10 (2009). [CrossRef]
  32. S. X. Xian and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).
  33. D. L. King, “Assimilation is due to one perceived whole, and contrast is due to two perceived wholes,” New Ideas Psychol. 6, 277–288 (1988).
  34. D. L. King, “Grouping and assimilation in perception, memory, and conditioning,” Rev. Gen. Psychol. 5, 23–43 (2001).
  35. M. Wertheimer, “Laws of organization in perceptual forms,” in W. D. Ellis (ed. and translator). A Source Book of Gestalt Psychology (Kegan Paul, Trench, Trubner, 1923/1938), pp. 71–88.
  36. W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000). [CrossRef]
  37. X. Xian, “Perceptual grouping in color perception,” Doctoral dissertation (University of Chicago, 2004).
  38. F. A. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003). [CrossRef]
  39. V. S. Ramachandran, “Perception of shape from shading,” Nature 331, 163–166 (1988). [CrossRef]
  40. K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009). [CrossRef]
  41. D. Wu, R. Kanai, and S. Shimojo, “Steady-state misbinding of colour and motion,” Nature 429, 262 (2004). [CrossRef]
  42. A. Treisman and H. Schmidt, “Illusory conjunctions in perception of objects,” Cogn. Psychol. 14, 107–141 (1982).
  43. Y. Sun, “On feature misbinding of color and motion,” Doctoral dissertation (University of Chicago, 2011).
  44. D. L. Medin, “Concepts and conceptual structure,” Am. Psychol. 44, 1469–1481 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited