OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A44–A51

Color appearance at ±10° along the vertical and horizontal meridians

Vicki J. Volbrecht and Janice L. Nerger  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A44-A51 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hue-scaling data were collected from three observers using the “4+1” color-naming procedure for circular (0.25°–5°), monochromatic (440–660 nm) stimuli. Stimuli were presented at ±10° along the vertical and horizontal meridians under conditions chosen to include both rod and cone signals (no bleach) and to minimize rod contribution (bleach). All color-naming data were analyzed and compared using uniform appearance diagrams. Smaller stimuli appear more desaturated under both bleach conditions. This effect is particularly detrimental for the perception of green and is influenced by retinal location and exacerbated with rod input. As stimulus size increases and perceptive field sizes are filled for all four elemental hues, the differences in hue perception among the four peripheral locations and the two bleach conditions are attenuated. Results are consistent with predictions based on known differences in the underlying retinal mosaic among the four locations.

© 2012 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.5020) Vision, color, and visual optics : Perception psychology

ToC Category:
Mesopic and peripheral color vision

Original Manuscript: August 25, 2011
Manuscript Accepted: November 6, 2011
Published: January 13, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Vicki J. Volbrecht and Janice L. Nerger, "Color appearance at ±10° along the vertical and horizontal meridians," J. Opt. Soc. Am. A 29, A44-A51 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987). [CrossRef]
  2. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990). [CrossRef]
  3. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991). [CrossRef]
  4. C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5–25 (1990). [CrossRef]
  5. D. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
  6. M. M. Connors and P. A. Kelsey, “Shape of the red and green color zone gradients,” J. Opt. Soc. Am. 51, 874–877 (1961). [CrossRef]
  7. D. O. Weitzman and J. A. S. Kinney, “Effect of stimulus size, duration, and retinal location upon the appearance of color,” J. Opt. Soc. Am. 59, 640–643 (1969). [CrossRef]
  8. J. Gordon and I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977). [CrossRef]
  9. I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991). [CrossRef]
  10. I. Abramov, J. Gordon, and H. Chan, “Color appearance across the retina: Effects of a white surround,” J. Opt. Soc. Am. A 9, 195–202 (1992). [CrossRef]
  11. V. J. Volbrecht, C. L. Clark, J. L. Nerger, and C. E. Randell, “Chromatic perceptive field sizes measured at 10° along the horizontal and vertical meridians,” J. Opt. Soc. Am. A 26, 1167–1177(2009). [CrossRef]
  12. B. Stabell and U. Stabell, “Rod and cone contributions to change in hue with eccentricity,” Vis. Res. 19, 1121–1125 (1979).
  13. B. Stabell and U. Stabell, “Peripheral colour vision: Effects of rod intrusion at different eccentricities,” Vis. Res. 36, 3407–3414 (1996).
  14. N. R. A. Parry, D. J. McKeefry, and I. J. Murray, “Variant and invariant color perception in the near peripheral retina,” J. Opt. Soc. Am. A 23, 1586–1597 (2006). [CrossRef]
  15. D. J. McKeefry, I. J. Murray, and N. R. A. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007). [CrossRef]
  16. M. A. Pitts, L. J. Troup, V. J. Volbrecht, and J. L. Nerger, “Chromatic perceptive field sizes change with retinal illuminance,” J. Vision 5, 435–443 (2005).
  17. L. J. Troup, M. A. Pitts, V. J. Volbrecht, and J. L. Nerger, “Effect of stimulus intensity on the sizes of chromatic perceptive fields,” J. Opt. Soc. Am. A 22, 2137–2142 (2005). [CrossRef]
  18. D. Jameson and L. M. Hurvich, “Fixation-light bias: An unwanted by-product of fixation control,” Vis. Res. 7, 805–809 (1967).
  19. M. Alpern, “Rhodopsin kinetics in the human eye,” J. Physiol. 217, 447–471.
  20. W. A. H. Rushton and D. Spitzer Powell, “The rhodopsin content and the visual threshold of human rods,” Vis. Res. 12, 1073–1081 (1972).
  21. G. Westheimer, “The Maxwellian view,” Vis. Res. 6, 669–682 (1966).
  22. J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: Hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994). [CrossRef]
  23. I. Abramov, J. Gordon, and H. Chan, “Color appearance: Properties of the uniform appearance diagram derived from hue and saturation scaling,” Att. Percept. Psychophys. 71, 632–643 (2009). [CrossRef]
  24. U. Stabell and B. Stabell, “Rod-cone mixture: Effect of size and exposure time,” J. Opt. Soc. Am. A 16, 2638–2642(1999). [CrossRef]
  25. G. Lange, N. Denny, and T. E. Frumkes, “Suppressive rod-cone interactions: Evidence for separate retinal (temporal) and extraretinal (spatial) mechanisms in achromatic vision,” J. Opt. Soc. Am. A 14, 2487–2498 (1997). [CrossRef]
  26. V. Virsu and B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
  27. V. Virsu, B. B. Lee, and D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate nucleus cells,” Vis. Res. 27, 191–200 (1987).
  28. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. U.S.A. 85, 4534–4537 (1988). [CrossRef]
  29. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828(1997).
  30. K. R. Alexander and G. A. Fishman, “Rod-cone interaction in flicker perimetry: evidence of a distal retinal locus,” Documenta Ophthalmologica 60, 3–36 (1985).
  31. T. E. Frumkes and T. Eysteinsson, “The cellular basis for suppressive rod-cone interation,” Vis. Neurosci. 1, 263–273 (1988).
  32. G. Wyszecki and W. Stiles, Color Science (Wiley, NY, 1982).
  33. C. E. Ferree and G. Rand, “Chromatic threshold of sensation from center to periphery of the retina and their bearing on color theory. Part I,” Psychol. Rev. 26, 16–41 (1919).
  34. C. E. Stromeyer, J. Lee, and R. T. Eskew, “Peripheral chromatic sensitivity for flashes: A post-receptor red-green asymmetry,” Vis. Res. 32, 1865–1873 (1992).
  35. F. M. DeMonasterio, P. Gouras, and D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 217–229 (1975).
  36. E. Zrenner and P. Gouras, “Cone opponency in tonic ganglion cells and its variation with eccentricity in the rhesus monkey,” in Colour Vision, J. D. Mollon and L. T. Sharpe, eds. (Academic , 1983), pp. 211–223.
  37. R. Shapley and H. Perry, “Cat and monkey retinal ganglion cells and their functional roles,” Trends Neurosci. 9, 229–235 (1986).
  38. K. T. Mullen and F. A. A. Kingdom, “Losses in peripheral colour sensitivity predicted from “Hit and Miss” post-receptoral cone connections,” Vis. Res. 36, 1995–2000 (1996).
  39. K. T. Mullen and F. A. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002).
  40. C. Vakrou, D. Whitaker, P. V. McGraw, and D. McKeefry, “Functional evidence for cone-specific connectivity in the human retina,” J. Physiol. 566, 93–102 (2005). [CrossRef]
  41. L. Diller, O. S. Packer, J. Verweij, M. J. McMahon, D. R. Williams, and D. M. Dacey, “L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina,” J. Neurosci. 24, 1079–1088 (2004).
  42. P. R. Martin, B. B. Lee, A. J. R. White, S. G. Solomon, and L. Rüttiger, “Chromatic sensitivity of ganglion cells in the peripheral primate retina,” Nature 410, 933–936 (2001). [CrossRef]
  43. S. G. Solomon, B. B. Lee, A. J. R. White, L. Rüttiger, and P. R. Martin, “Chromatic organization of ganglion cell receptive fields in the peripheral retina,” J. Neurosci. 25, 4527–4539(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited