OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A82–A95

1/f noise in human color vision: the role of S-cone signals

José M. Medina and José A. Díaz  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A82-A95 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the functional role of S-cone signals on reaction time (RT) variability in human color vision. Stimuli were selected along red–green and blue–yellow cardinal directions and at random directions in the isoluminant plane of the color space. Trial-to-trial RT variability was not statistically independent but correlated across experimental conditions and exhibited 1/f noise spectra with an exponent close to unity in most of the cases. Regarding contrast coding, 1/f noise for random chromatic stimuli at isoluminance was similar to that for achromatic stimuli, thus suggesting that S-cone signals reduce variability of higher order color mechanisms. If we regard spatial coding, the effect of S-cone density in the retina on RT variability was investigated. The magnitude of 1/f noise at 16 min of arc (S-cone free zone) was higher than at 90 min of arc in the blue–yellow channel, and it was similar for the red–green channel. The results suggest that S-cone signals are beneficial and they modulate 1/f noise spectra at postreceptoral stages. The implications related to random multiplicative processes as a possible source of 1/f noise and the optimal information processing in color vision are discussed.

© 2012 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Color sensitivity and appearance

Original Manuscript: September 1, 2011
Revised Manuscript: November 15, 2011
Manuscript Accepted: November 16, 2011
Published: January 13, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

José M. Medina and José A. Díaz, "1/f noise in human color vision: the role of S-cone signals," J. Opt. Soc. Am. A 29, A82-A95 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Faisal, L. P. J. Selen, and D. M. Wolpert, “Noise in the nervous system,” Nat. Rev. Neurosci. 9, 292–303 (2008). [CrossRef]
  2. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  3. T. D. Lamb, “Sources of noise in photoreceptor transduction,” J. Opt. Soc. Am. A 4, 2295–2300 (1987). [CrossRef]
  4. V. Torre, J. F. Ashmore, T. D. Lamb, and A. Menini, “Transduction and adaptation in sensory receptor cells,” J. Neurosci. 15, 7757–7768 (1995).
  5. D. L. Gilden, T. Thornton, and M. W. Mallon, “1/f Noise in human cognition,” Science 267, 1837–1839 (1995). [CrossRef]
  6. J. S. Anderson, I. Lampl, D. C. Gillespie, and D. Ferster, “The contribution of noise to contrast invariance of orientation tuning in cat visual cortex,” Science 290, 1968–1972 (2000). [CrossRef]
  7. R. B. Stein, E. R. Gossen, and K. E. Jones, “Neuronal variability: noise or part of the signal?” Nat. Rev. Neurosci. 6, 389–397 (2005). [CrossRef]
  8. C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines motor planning,” Nature 394, 780–784 (1998). [CrossRef]
  9. D. I. A. Macleod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  10. R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993). [CrossRef]
  11. K. R. Gegenfurtner and D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003). [CrossRef]
  12. S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007). [CrossRef]
  13. P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997). [CrossRef]
  14. S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Annu. Rev. Neurosci. 23, 127–153 (2000). [CrossRef]
  15. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000). [CrossRef]
  16. D. J. Calkins, “Seeing with S cones,” Prog. Retin. Eye Res. 20, 255–287 (2001). [CrossRef]
  17. J. J. Nassi and E. M. Callaway, “Parallel processing strategies of the primate visual system,” Nat. Rev. Neurosci. 10, 360–372 (2009). [CrossRef]
  18. N. P. Cottaris and R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998). [CrossRef]
  19. M. Vorobyev and D. Osorio, “Receptor noise as a determinant of colour thresholds,” Proc. R. Soc. Lond. B 265, 351–358(1998). [CrossRef]
  20. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992). [CrossRef]
  21. M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997). [CrossRef]
  22. K. T. Mullen, W. H. A. Beaudot, and W. H. McIlhagga, “Contour integration in color vision: a common process for the blue–yellow, red–green and luminance mechanisms?” Vis. Res. 40, 639–655 (2000). [CrossRef]
  23. R. D. Luce, Response Times (Oxford University, 1986).
  24. E. J. Wagenmakers and S. Brown, “On the linear relation between the mean and the standard deviation of a response time distribution,” Psychol. Rev. 114, 830–841 (2007). [CrossRef]
  25. J. M. Medina and J. A. Díaz, “1/f Noise through retino-cortical pathways assessed by reaction times,” in Noise and Fluctuations, AIP Conference Proceedings (AIP, 2009), Vol. 1129, 553–556. [CrossRef]
  26. J. G. Holden, G. C. Van Orden, and M. T. Turvey, “Dispersion of response times reveals cognitive dynamics,” Psychol. Rev. 116, 318–342 (2009). [CrossRef]
  27. J. M. Medina and J. A. Díaz, “Response variability of the red-green color vision system using reaction times,” Proc. SPIE 8001, 80013B (2011). [CrossRef]
  28. P. Lennie, “The physiological basis of variations in visual latency,” Vis. Res. 21, 815–824 (1981). [CrossRef]
  29. D. Mitov and T. Totev, “How many pathways determine the speed of grating detection?” Vis. Res. 45, 821–825 (2005). [CrossRef]
  30. W. Schottky, “Small-shot effect and flicker effect,” Phys. Rev. 28, 74–103 (1926). [CrossRef]
  31. W. H. Press, “Flicker noises in astronomy and elsewhere,” Comments Astrophys. 7, 103–119 (1978).
  32. C. M. Anderson and A. J. Mandell, “Fractal time and the foundations of consciousness,” in Fractals of Brain, Fractals of Mind: In Search of a Symmetry Bond, E. A. Mac Cormac and M. I. Stamenov, eds. (John Benjamins, 1996), pp. 75–126.
  33. B. J. West, E. L. Geneston, and P. Grigolini, “Maximizing information exchange between complex networks,” Phys. Rep. 468, 1–99 (2008). [CrossRef]
  34. A. A. Verveen and H. E. Derksen, “Fluctuation phenomena in nerve membrane,” Proc. IEEE 56, 906–916 (1968). [CrossRef]
  35. T. Musha, Y. Kosugi, G. Matsumoto, and M. Suzuki, “1/f fluctuations in biological systems,” IEEE Trans. Biomed. Eng. BME-28, 616–623 (1981). [CrossRef]
  36. T. Musha and M. Yamamoto, “1/f fluctuations in biological systems,” in Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE (IEEE, 1997), Vol. 6, pp. 2692–2697.
  37. W. J. Freeman and B. W. Vandijk, “Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey,” Brain Res. 422, 267–276 (1987). [CrossRef]
  38. P. Allegrini, D. Menicucci, R. Bedini, L. Fronzoni, A. Gemignani, P. Grigolini, B. J. West, and P. Paradisi, “Spontaneous brain activity as a source of ideal 1/f noise,” Phys. Rev. E 80, 061914 (2009). [CrossRef]
  39. M. D. Fox, A. Z. Snyder, J. L. Vincent, and M. E. Raichle, “Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior,” Neuron 56, 171–184 (2007). [CrossRef]
  40. B. Y. J. He, J. M. Zempel, A. Z. Snyder, and M. E. Raichle, “The temporal structures and functional significance of scale-free brain activity,” Neuron 66, 353–369 (2010). [CrossRef]
  41. R. F. Voss and J. Clarke, “1/f noise in music and speech,” Nature 258, 317–318 (1975). [CrossRef]
  42. Y. Q. Chen, M. Z. Ding, and J. A. S. Kelso, “Long memory processes (1/fα type) in human coordination,” Phys. Rev. Lett. 79, 4501–4504 (1997). [CrossRef]
  43. K. Torre and E.-J. Wagenmakers, “Theories and models for 1/fβ noise in human movement science,” Hum. Mov. Sci. 28, 297–318 (2009). [CrossRef]
  44. T. Gisiger, “Scale invariance in biology: coincidence or footprint of a universal mechanism?” Biol. Rev. 76, 161–209 (2001). [CrossRef]
  45. L. M. Ward, Dynamical Cognitive Science (MIT Press, 2002).
  46. D. L. Gilden, “Cognitive emissions of 1/f noise,” Psychol. Rev. 108, 33–56 (2001). [CrossRef]
  47. T. L. Thornton and D. L. Gilden, “Provenance of correlations in psychological data,” Psychon. Bull. Rev. 12, 409–441 (2005). [CrossRef]
  48. P. Grigolini, G. Aquino, M. Bologna, M. Lukovic, and B. J. West, “A theory of 1/f noise in human cognition,” Physica A 388, 4192–4204 (2009). [CrossRef]
  49. D. L. Gilden, “Fluctuations in the time required for elementary decisions,” Psychol. Sci. 8, 296–301 (1997). [CrossRef]
  50. C. T. Kello, B. C. Beltz, J. G. Holden, and G. C. Van Orden, “The emergent coordination of cognitive function,” J. Exp. Psychol. Gen. 136, 551–568 (2007). [CrossRef]
  51. J. Correll, “Order from chaos? 1/f noise predicts performance on reaction time measures,” J. Exp. Soc. Psychol. 47, 830–835 (2011). [CrossRef]
  52. J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurther and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 303–317.
  53. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000). [CrossRef]
  54. R. L. De Valois, K. K. De Valois, and L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. USA 97, 512–517 (2000). [CrossRef]
  55. Y. G. Yu, R. Romero, and T. S. Lee, “Preference of sensory neural coding for 1/f signals,” Phys. Rev. Lett. 94, 108103 (2005). [CrossRef]
  56. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994). [CrossRef]
  57. B. G. Breitmeyer and J. I. Breier, “Effects of background color on reaction time to stimuli varying in size and contrast: inferences about human M channels,” Vis. Res. 34, 1039–1045(1994). [CrossRef]
  58. J. A. Díaz, L. del Jiménez Barco, J. R. Jiménez, and F. Perez-Ocón, “Chromatic spatial summation at equiluminance,” Opt. Rev. 8, 388–396 (2001). [CrossRef]
  59. J. A. Díaz, L. del Jiménez Barco, J. R. Jiménez, and E. Hita, “Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes,” Color Res. Appl. 26, 223–233 (2001). [CrossRef]
  60. J. R. Jiménez, J. M. Medina, L. del Jiménez Barco, and J. A. Díaz, “Binocular summation of chromatic changes as measured by visual reaction time,” Atten. Percept. Psychophys. 64, 140–147 (2002). [CrossRef]
  61. D. J. McKeefry, N. R. A. Parry, and I. J. Murray, “Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency,” Investig. Ophthalmol. Vis. Sci. 44, 2267–2276 (2003). [CrossRef]
  62. N. R. A. Parry, S. Plainis, I. J. Murray, and D. J. McKeefry, “Effect of foveal tritanopia on reaction times to chromatic stimuli,” Vis. Neurosci. 21, 237–242 (2004). [CrossRef]
  63. J. M. Medina and J. A. Díaz, “Postreceptoral chromatic-adaptation mechanisms in the red-green and blue-yellow systems using simple reaction times,” J. Opt. Soc. Am. A 23, 993–1007 (2006). [CrossRef]
  64. B. M. O’Donell, J. F. Barraza, and E. M. Colombo, “The effect of chromatic and luminance information on reaction times,” Vis. Neurosci. 27, 1–11 (2010). [CrossRef]
  65. C. A. Curcio, K. A. Allen, K. R. Sloan, C. I. Lerea, J. B. Hurley, I. B. Klock, and A. H. Millam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991). [CrossRef]
  66. P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of 1/f noise,” Phys. Rev. Lett. 59, 381–384 (1987). [CrossRef]
  67. J. M. Medina, “1/fα noise in reaction times: a proposed model based on Pieron’s law and information processing,” Phys. Rev. E 79, 011902 (2009). [CrossRef]
  68. C. T. Kello, G. D. A. Brown, R. Ferrer-i-Cancho, J. G. Holden, K. Linkenkaer-Hansen, T. Rhodes, and G. C. Van Orden, “Scaling laws in cognitive sciences,” Trends Cogn. Sci. 14, 223–232 (2010). [CrossRef]
  69. H. Piéron, The Sensations (Yale University, 1952).
  70. J. M. Medina, “Effects of multiplicative power law neural noise in visual information processing,” Neural Comput. 23, 1015–1046 (2011). [CrossRef]
  71. P. L. Smith, “Psychophysically principled models of visual simple reaction time,” Psychol. Rev. 102, 567–593 (1991). [CrossRef]
  72. N. D. Singpurwalla and M. Y. Wong, “Estimation of the failure rate: a survey of nonparametric methods. 1 Non-Bayesian methods,” Commun. Stat. Theory Methods 12, 559–588 (1983). [CrossRef]
  73. T. Ueno, “Sustained and transient properties of chromatic and luminance systems,” Vis. Res. 32, 1055–1065 (1992). [CrossRef]
  74. J. M. Medina, “Binocular interactions in random chromatic changes at isoluminance,” J. Opt. Soc. Am. A 23, 239–246(2006). [CrossRef]
  75. H. C. Hughes and J. T. Townsend, “Varieties of binocular interaction in human vision,” Psychol. Sci. 9, 53–60 (1998). [CrossRef]
  76. J. A. Díaz, “Estudio de los efectos de la integración espacio-temporal en los fenónemos de detección cromática en visión central y periférica,” Ph.D. thesis (University of Granada, 1997).
  77. J. M. Medina, “Estudio de las propiedades y modelos del tiempo de reaccion binocular simple con relacion al color,” Ph.D. thesis (University of Granada, 2002).
  78. L. del Jiménez Barco, J. A. Díaz, J. R. Jiménez, and M. Rubino, “Considerations on the calibration of color displays assuming constant channel chromaticity,” Color Res. Appl. 20, 377–387 (1995). [CrossRef]
  79. J. A. Díaz, J. R. Jiménez, E. Hita, and L. del Jiménez Barco, “Optimizing the constant-channel chromaticity and color gamut of CRT color displays by control of brightness and contrast levels,” Appl. Opt. 35, 1711–1718 (1996). [CrossRef]
  80. “Declaration of Helsinki: ethical principles for medical research involving human subjects,” (World Medical Association, 2008), www.wma.net/en/30publications/10policies/b3/ .
  81. M. J. Nissen and J. Pokorny, “Wavelength effects on simple reaction time,” Atten. Percept. Psychophys. 22, 457–462 (1977). [CrossRef]
  82. G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-formula contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993). [CrossRef]
  83. V. C. Smith and J. Pokorny, “Spectral sensitivity of foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  84. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C (Cambridge University, 1992).
  85. N. Chater and G. D. A. Brown, “Scale-invariance as a unifying psychological principle,” Cognition 69, B17–B24 (1999). [CrossRef]
  86. V. A. Billock and B. H. Tsou, “Sensory recoding via neural synchronization: integrating hue and luminance into chromatic brightness and saturation,” J. Opt. Soc. Am. A 22, 2289–2298 (2005). [CrossRef]
  87. C. Bonnet, J. Gurlekian, and P. Harris, “Reaction time and visual area: searching for determinants,” Bull. Psychon. Soc. 30, 396–398 (1992).
  88. A. Vassilev, M. Mihaylova, and C. Bonnet, “On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation,” Vis. Res. 42, 851–864 (2002). [CrossRef]
  89. K. Donner and P. Fagerholm, “Visual reaction time: neural conditions for the equivalence of stimulus area and contrast,” Vis. Res. 43, 2937–2940 (2003). [CrossRef]
  90. H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. 141, 337–350 (1958).
  91. H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. 136469–488 (1957).
  92. J. Miller and R. Ulrich, “Simple reaction time and statistical facilitation: a parallel grains model,” Cogn. Psychol. 46, 101–151 (2003). [CrossRef]
  93. J. D. Victor, E. M. Blessing, J. D. Forte, P. Buzas, and P. R. Martin, “Response variability of marmoset parvocellular neurons,” J. Physiol. 579, 29–51 (2007). [CrossRef]
  94. D. J. Tolhurst, J. A. Movshon, and A. F. Dean, “The statistical reliability of signals in single neurons in cat and monkey visual cortex,” Vis. Res. 23, 775–785 (1983). [CrossRef]
  95. R. Vogels, W. Spileers, and G. A. Orban, “The response variability of striate cortical neurons in the behaving monkey,” Exp. Brain Res. 77, 432–436 (1989). [CrossRef]
  96. G. A. Cecchi, M. Sigman, J. M. Alonso, L. Martinez, D. R. Chialvo, and M. O. Magnasco, “Noise in neurons is message dependent,” Proc. Natl. Acad. Sci. USA 97, 5557–5561 (2000). [CrossRef]
  97. K. H. Norwich, C. N. L. Seburn, and E. Axelrad, “An informational approach to reaction times,” Bull. Math. Biol. 51, 347–358(1989). [CrossRef]
  98. K. H. Norwich, Information, Sensation, and Perception(Academic, 1993).
  99. T. M. Makinen, L. A. Palinkas, D. L. Reeves, T. Paakkonen, H. Rintamaki, J. Leppaluoto, and J. Hassi, “Effect of repeated exposures to cold on cognitive performance in humans,” Physiol. Behav. 87, 166–176 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited