OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 239–243

Toward a cylindrical cloak via inverse homogenization

Tom H. Anderson, Tom G. Mackay, and Akhlesh Lakhtakia  »View Author Affiliations


JOSA A, Vol. 29, Issue 3, pp. 239-243 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000239


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An effective cylindrical cloak may be conceptualized as an assembly of adjacent local neighborhoods, each of which is made from a homogenized composite material (HCM). The HCM is required to be a certain uniaxial dielectric-magnetic material, characterized by positive-definite constitutive dyadics. It can arise from the homogenization of component materials that are remarkably simple in terms of their structure and constitutive relations. For example, the components can be two isotropic dielectric-magnetic materials, randomly distributed as oriented spheroidal particles. By carefully controlling the spheroidal shape of the component particles, a high degree of HCM anisotropy may be achieved which is necessary for the cloaking effect to be realized. The inverse Bruggeman formalism can provide estimates of the shape and constitutive parameters for the component materials, as well as their volume fractions.

© 2012 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.1245) Materials : Artificially engineered materials
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Materials

History
Original Manuscript: October 14, 2011
Revised Manuscript: November 17, 2011
Manuscript Accepted: November 20, 2011
Published: February 9, 2012

Citation
Tom H. Anderson, Tom G. Mackay, and Akhlesh Lakhtakia, "Toward a cylindrical cloak via inverse homogenization," J. Opt. Soc. Am. A 29, 239-243 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-3-239


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. V. Skrotskii, “The influence of gravitation on the propagation of light,” Sov. Phys. Dokl. 2, 226–229 (1957).
  2. J. Plébanski, “Electromagnetic waves in gravitational fields,” Phys. Rev. 118, 1396–1408 (1960). [CrossRef]
  3. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982). [CrossRef]
  4. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999). [CrossRef]
  5. R. A. Depine, M. E. Inchaussandague, and A. Lakhtakia, “Vector theory of diffraction by gratings made of a uniaxial dielectric-magnetic material exhibiting negative refraction,” J. Opt. Soc. Am. B 23, 514–528 (2006). [CrossRef]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  7. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007). [CrossRef]
  8. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Rev. 51, 3–33 (2009). [CrossRef]
  9. Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef]
  10. J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13, 083007(2011). [CrossRef]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006). [CrossRef]
  12. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef]
  13. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef]
  14. G. Milton, “Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors,” New J. Phys. 12, 033035 (2010). [CrossRef]
  15. H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011). [CrossRef]
  16. T. G. Mackay and A. Lakhtakia, “Towards a metamaterial simulation of a spinning cosmic string,” Phys. Lett. A 374, 2305–2308 (2010). [CrossRef]
  17. T. H. Anderson, T. G. Mackay, and A. Lakhtakia, “Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking,” Phys. Lett. A 374, 4637–4641 (2010). [CrossRef]
  18. T. H. Anderson, T. G. Mackay, and A. Lakhtakia, “Ray trajectories for Alcubierre spacetime,” J. Opt. 13, 055107 (2011). [CrossRef]
  19. M. Kline and I. W. Kay, Electromagnetic Theory and Geometric Optics (Interscience, 1965).
  20. M. Sluijter, D. K. De Boer, and H. P. Urbach, “Ray-optics analysis of inhomogeneous biaxially anisotropic media,” J. Opt. Soc. Am. A 26, 317–329 (2009). [CrossRef]
  21. W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” J. Opt. Soc. Am. A 25, 968–973 (2008). [CrossRef]
  22. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007). [CrossRef]
  23. T. G. Mackay and A. Lakhtakia, “Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial,” Phys. Rev. B 83, 195424 (2011). [CrossRef]
  24. T. G. Mackay, A. Lakhtakia, and S. Setiawan, “Gravitation and electromagnetic wave propagation with negative phase velocity,” New J. Phys. 7, 75 (2005). [CrossRef]
  25. T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (Word Scientific, 2010).
  26. T. G. Mackay, “Effective constitutive parameters of linear nanocomposites in the long-wavelength regime,” J. Nanophoton. 5, 051001 (2011). [CrossRef]
  27. W. S. Weiglhofer, “On the inverse homogenization problem of linear composite materials,” Microw. Opt. Technol. Lett. 28, 421–423 (2001). [CrossRef]
  28. E. Cherkaev, “Inverse homogenization for evaluation of effective properties of a mixture,” Inverse Probl. 17, 1203–1218 (2001). [CrossRef]
  29. T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010). [CrossRef]
  30. S. S. Jamaian and T. G. Mackay, “On limitations of the Bruggeman formalism for inverse homogenization,” J. Nanophoton. 4, 043510 (2010). [CrossRef]
  31. A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007). [CrossRef]
  32. G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007). [CrossRef]
  33. M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011). [CrossRef]
  34. A. Sihvola, S. Tretyakov, and A. de Baas, “Metamaterials with extreme material parameters,” J. Commun. Technol. Electron. 52, 986–990 (2007). [CrossRef]
  35. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). [CrossRef]
  36. T. G. Mackay and W. S. Weiglhofer, “Homogenization of biaxial composite materials: dissipative anisotropic properties,” J. Opt. A: Pure Appl. Opt. 2, 426–432 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited