OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 265–269

Highly efficient broadband conversion of light polarization by composite retarders

Svetoslav S. Ivanov, Andon A. Rangelov, Nikolay V. Vitanov, Thorsten Peters, and Thomas Halfmann  »View Author Affiliations


JOSA A, Vol. 29, Issue 3, pp. 265-269 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000265


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Driving on an analogy with the technique of composite pulses in quantum physics, we propose highly efficient broadband polarization converters composed of sequences of ordinary retarders rotated at specific angles with respect to their fast-polarization axes.

© 2012 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: September 30, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 18, 2011
Published: February 14, 2012

Citation
Svetoslav S. Ivanov, Andon A. Rangelov, Nikolay V. Vitanov, Thorsten Peters, and Thomas Halfmann, "Highly efficient broadband conversion of light polarization by composite retarders," J. Opt. Soc. Am. A 29, 265-269 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-3-265


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  2. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).
  3. D. Goldstein and E. Collett, Polarized Light (CRC, 2003).
  4. C. D. West and A. S. Makas, “The spectral dispersion of birefringence, especially of birefringent plastic sheets,” J. Opt. Soc. Am. 39, 791–794 (1949). [CrossRef]
  5. M. G. Destriau and J. Prouteau, “Réalisation d’un quart d’onde quasi achromatique par juxtaposition de deux lames cristallines de méme nature,” J. Phys. Radium 10, 53–55 (1949). [CrossRef]
  6. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I: An achromatic circular polarizer,” Proc. Indian Acad. Sci. A41, 130–136 (1955).
  7. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. A41, 137–144 (1955).
  8. S. E. Harris, E. O. Ammann, and A. C. Chang, “Optical network synthesis using birefringent crystals. I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. 54, 1267–1279 (1964). [CrossRef]
  9. C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. 58, 1575–1580 (1968). [CrossRef]
  10. H. Kubo and R. Nagata, “Equations of light propagation in an inhomogeneous crystal,” Opt. Commun. 27, 201–206 (1978). [CrossRef]
  11. H. Kubo and R. Nagata, “Stokes parameters representation of the light propagation equations in inhomogeneous anisotropic, optically active media,” Opt. Commun. 34, 306–308 (1980). [CrossRef]
  12. H. Kuratsuji and S. Kakigi, “Maxwell-Schrodinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998). [CrossRef]
  13. H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007). [CrossRef]
  14. A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 3891–3894 (2010). [CrossRef]
  15. R. Botet and H. Kuratsuji, “Light-polarization tunneling in optically active media,” J. Phys. A 41, 035301 (2008). [CrossRef]
  16. R. Botet, and H. Kuratsuji, “Stochastic theory of the Stokes parameters in randomly twisted fiber,” Phys. Rev. E 81, 036602 (2010). [CrossRef]
  17. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  18. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986). [CrossRef]
  19. R. Freeman, Spin Choreography (Spektrum, 1997).
  20. S. Wimperis, “Broadband, narrowband and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson. Ser. A 109, 221–231 (1994). [CrossRef]
  21. S. S. Ivanov and N. V. Vitanov, “High-fidelity local addressing of trapped ions and atoms by composite sequences of laser pulses,” Opt. Lett. 36, 1275–1277 (2011). [CrossRef]
  22. B. T. Torosov and N. V. Vitanov, “Smooth composite pulses for high-fidelity quantum information processing,” Phys. Rev. A 83, 053420 (2011). [CrossRef]
  23. B. T. Torosov, S. Guérin, and N. V. Vitanov, “High-fidelity adiabatic passage by composite sequences of chirped pulses,” Phys. Rev. Lett. 106, 233001 (2011). [CrossRef]
  24. H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008). [CrossRef]
  25. S. S. Ivanov and N. V. Vitanov, “Scalable uniform construction of highly conditional quantum gates,” Phys. Rev. A 84, 022319 (2011). [CrossRef]
  26. A. Ardavan, “Exploiting the Poincare–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007). [CrossRef]
  27. K. R. Brown, A. W. Harrow, and I. L. Chuang, “Arbitrarily accurate composite pulse sequences,” Phys. Rev. A 70, 052318 (2004). [CrossRef]
  28. W. G. Alway and J. A. Jones, “Arbitrary precision composite pulses for NMR quantum computing,” J. Magn. Reson. 189, 114–120 (2007). [CrossRef]
  29. D. Mc Hugh and J. Twamley, “Sixth-order robust gates for quantum control,” Phys. Rev. A 71, 012327 (2005). [CrossRef]
  30. H. Hurvitz and R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 493–495 (1941). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited