OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 303–312

Photoluminescence from a homogeneous volume source within an optical multilayer: analytical formulas

Enrico Nichelatti and Rosa Maria Montereali  »View Author Affiliations


JOSA A, Vol. 29, Issue 3, pp. 303-312 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000303


View Full Text Article

Enhanced HTML    Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model for light emission from a homogeneous volume source, such as an optically active layer, within a multilayer is demonstrated. The role of an external linearly polarized optical pump is taken into account. The resulting formulas for the radiated powers are fully analytical. They are applied to investigate the effect of a plane-wave pump in a basic λ/2 cavity and to calculate the photoluminescence polar diagrams of color centers from three resonating thin-film lithium-fluoride-based microstructures.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(140.5560) Lasers and laser optics : Pumping
(230.4170) Optical devices : Multilayers
(260.3800) Physical optics : Luminescence
(140.3948) Lasers and laser optics : Microcavity devices
(310.6805) Thin films : Theory and design

ToC Category:
Optical Devices

History
Original Manuscript: July 7, 2011
Revised Manuscript: December 1, 2011
Manuscript Accepted: December 2, 2011
Published: February 16, 2012

Citation
Enrico Nichelatti and Rosa Maria Montereali, "Photoluminescence from a homogeneous volume source within an optical multilayer: analytical formulas," J. Opt. Soc. Am. A 29, 303-312 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-3-303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973). [CrossRef]
  2. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991). [CrossRef]
  3. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991). [CrossRef]
  4. F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992). [CrossRef]
  5. S. M. Dutra, Cavity Quantum Electrodynamics—The Strange Theory of Light in a Box (Wiley, 2005).
  6. P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer-Verlag, 2007).
  7. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970). [CrossRef]
  8. K. H. Tews, “On the variation of luminescence lifetimes. the approximations of the approximative methods,” J. Lumin. 9, 223–239 (1974). [CrossRef]
  9. J. Dowling, M. Scully, and F. De Martini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991). [CrossRef]
  10. H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996). [CrossRef]
  11. S. Ciancaleoni, P. Mataloni, O. Jedrkiewicz, and F. De Martini, “Angular distribution of the spontaneous emission in a planar dielectric dye microcavity,” J. Opt. Soc. Am. B 14, 1556–1563 (1997). [CrossRef]
  12. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15, 1192–1201 (1998). [CrossRef]
  13. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part i: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998). [CrossRef]
  14. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part ii: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998). [CrossRef]
  15. N. Danz, J. Heber, and A. Brauer, “Fluorescence lifetimes of molecular dye ensembles near interfaces,” Phys. Rev. A 66, 063809 (2002). [CrossRef]
  16. H. Benisty, “Spontaneous emission and coupled-mode theory in multimode 1-D systems with contradirectional coupling,” IEEE J. Quantum Electron. 47, 204–212 (2011). [CrossRef]
  17. E. Nichelatti, “Cooperative spontaneous emission from volume sources in layered media,” Tech. Rep. RT/2009/4/FIM (ENEA, 2009).
  18. M. Marrocco and E. Nichelatti, “Coherent anti-Stokes Raman scattering microscopy within a microcavity with parallel mirrors,” J. Raman Spectrosc. 40, 732–740 (2009). [CrossRef]
  19. E. Nichelatti, M. Marrocco, and R. M. Montereali, “Cooperative optical effects in volumes embedded in layered media,” J. Raman Spectrosc. 41, 859–865 (2010). [CrossRef]
  20. E. Nichelatti, F. Bonfigli, M. A. Vincenti, and R. M. Montereali, “Optical modelling of an Alq3-based organic light-emitting diode,” J. Opt. Technol. 78, 424–429 (2011). [CrossRef]
  21. P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001). [CrossRef]
  22. J. Nahum and D. A. Wiegand, “Optical properties of some F-aggregate centers in LiF,” Phys. Rev. 154, 817–830 (1967). [CrossRef]
  23. R. M. Montereali, “Point defects in thin insulating films of lithium fluoride for optical microsystems in ferroelectric and dielectric thin films,” vol. 3 of Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2002), pp. 399–431.
  24. F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004). [CrossRef]
  25. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14, 1160–1166 (1997). [CrossRef]
  26. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, 1986).
  27. A. E. Siegman, Lasers (University Science, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited