OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 321–330

Information loss and reconstruction in diffuse fluorescence tomography

Petra Bonfert-Taylor, Frederic Leblond, Robert W. Holt, Kenneth Tichauer, Brian W. Pogue, and Edward C. Taylor  »View Author Affiliations


JOSA A, Vol. 29, Issue 3, pp. 321-330 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000321


View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper is a theoretical exploration of spatial resolution in diffuse fluorescence tomography. It is demonstrated that, given a fixed imaging geometry, one cannot—relative to standard techniques such as Tikhonov regularization and truncated singular value decomposition—improve the spatial resolution of the optical reconstructions via increasing the node density of the mesh considered for modeling light transport. Using techniques from linear algebra, it is shown that, as one increases the number of nodes beyond the number of measurements, information is lost by the forward model. It is demonstrated that this information cannot be recovered using various common reconstruction techniques. Evidence is provided showing that this phenomenon is related to the smoothing properties of the elliptic forward model that is used in the diffusion approximation to light transport in tissue. This argues for reconstruction techniques that are sensitive to boundaries, such as L1-reconstruction and the use of priors, as well as the natural approach of building a measurement geometry that reflects the desired image resolution.

© 2012 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.6960) Imaging systems : Tomography
(110.7050) Imaging systems : Turbid media
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: September 2, 2011
Revised Manuscript: November 16, 2011
Manuscript Accepted: December 2, 2011
Published: February 17, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Petra Bonfert-Taylor, Frederic Leblond, Robert W. Holt, Kenneth Tichauer, Brian W. Pogue, and Edward C. Taylor, "Information loss and reconstruction in diffuse fluorescence tomography," J. Opt. Soc. Am. A 29, 321-330 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-3-321


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001). [CrossRef]
  2. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
  3. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005). [CrossRef]
  4. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef]
  5. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  6. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008). [CrossRef]
  7. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002). [CrossRef]
  8. F. Leblond, S. Davis, P. Valdés, and B. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010). [CrossRef]
  9. F. Leblond, K. M. Tichauer, and B. W. Pogue, “Singular value decomposition metrics show limitations of detector design in diffuse optical tomography,” Biomed. Opt. Express 1, 1514–1531(2010). [CrossRef]
  10. F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444–1457 (2009). [CrossRef]
  11. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
  12. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  13. P. Yalavarthy, H. Dehghani, B. Pogue, and K. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006). [CrossRef]
  14. C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging 16, 378–387 (2002). [CrossRef]
  15. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235–260 (2002). [CrossRef]
  16. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006). [CrossRef]
  17. D. S. Kepshire, N. Mincu, M. Hutchins, J. Guber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, doi:10.1063/1.3109903, 043701 (2009). [CrossRef]
  18. H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. Pogue, and K. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng. 25, 711–732 (2009). [CrossRef]
  19. R. A. J. Groenhuis, H. A. Ferwada, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef]
  20. R. A. J. Groenhuis, J. J. Ten Bosch, and H. A. Ferwada, “Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
  21. D. Paithankar, A. Chen, B. Pogue, M. Patterson, and E. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997). [CrossRef]
  22. S. Friedberg, A. Insel, and L. Spence, Linear Algebra, 4th ed. (Prentice Hall, 2003).
  23. G. Golub and C. F. van Loan, Matrix Calculations (Johns Hopkins University, 1989).
  24. K. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995). [CrossRef]
  25. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef]
  26. Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, “A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media,” Phys. Med. Biol. 56, 7419–7434 (2011). [CrossRef]
  27. F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36, 3723–3725 (2011). [CrossRef]
  28. K. M. Tichauer, R. W. Holt, F. El-Gussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, “Imaging workflow and optical data calibration for CT-guided whole-body time-domain fluorescence tomography,” Biomed. Opt. Express 2, 3021–3036 (2011). [CrossRef]
  29. P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms (SIAM, 2010).
  30. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer-Verlag, 2005).
  31. J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett. 35, 2121–2123 (2010). [CrossRef]
  32. S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16, 5048–5060 (2008). [CrossRef]
  33. Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30, 3338–3340 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited