OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 374–384

Color space transformations for digital photography exploiting information about the illuminant estimation process

Simone Bianco, Arcangelo Bruna, Filippo Naccari, and Raimondo Schettini  »View Author Affiliations

JOSA A, Vol. 29, Issue 3, pp. 374-384 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The color reproduction accuracy is a key factor to the overall perceived image quality in digital photography. In this framework, both the illuminant estimation process and the color correction matrix concur in the formation of the overall perceived image quality. To the best of our knowledge, the two processes have always been studied separately, thus ignoring the interactions between them. We investigate here these interactions, showing how the color correction transform amplifies the illuminant estimation errors. We demonstrate that incorporating knowledge about the illuminant estimation behavior in the optimization of the color correction matrix makes it possible to alleviate the error amplification. Different strategies to improve color accuracy under both perfect and imperfect white point estimations are investigated, and the experimental results obtained with a digital camera simulator are reported.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(330.1710) Vision, color, and visual optics : Color, measurement

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: August 16, 2011
Revised Manuscript: October 19, 2011
Manuscript Accepted: December 1, 2011
Published: February 28, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Simone Bianco, Arcangelo Bruna, Filippo Naccari, and Raimondo Schettini, "Color space transformations for digital photography exploiting information about the illuminant estimation process," J. Opt. Soc. Am. A 29, 374-384 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22(1), 34–43 (2005). [CrossRef]
  2. S. D. Hordley, “Scene illuminant estimation: past, present, and future,” Color Res. Appl. 31, 303–314 (2006). [CrossRef]
  3. P. M. Hubel, J. Holm, G. D. Finlayson, and M. S. Drew, “Matrix calculations for digital photography,” Proceedings of the IS&T/SID Fifth Color Imaging Conference: Color Science, Systems, and Applications (Society for Imaging Science and Technology, 1997), pp. 105–111.
  4. S. Bianco, F. Gasparini, A. Russo, and R. Schettini, “A new method for RGB to XYZ transformation based on pattern search optimization,” IEEE Trans. Consum. Electron. 53, 1020–1028 (2007). [CrossRef]
  5. P. D. Burns and R. S. Berns, “Error propagation analysis in color measurement and imaging,” Color Res. Appl. 22, 280–289 (1997). [CrossRef]
  6. B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (20 July 1976).
  7. J. von Kries, “Chromatic adaptation,” in Festschrift der Albrecht-Ludwig-Universität (Fribourg, 1902). Translation by D. L. MacAdam, Sources of Color Science (MIT Press, 1970).
  8. G. D. Finlayson and S. D. Hordley, “Color by correlation: a simple, unifying framework for color constancy,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1209–1221 (2001). [CrossRef]
  9. Y. Yang and A. Yuille, “Sources from shading,” in IEEE Conference on Computer Vision and Pattern Recognition CVPR ’91 (IEEE Computer Society, 1991), pp. 534–539.
  10. S. Bianco, F. Gasparini, and R. Schettini, “Consensus based framework for illuminant chromaticity estimation,” J. Electron. Imaging 17, 023013 (2008). [CrossRef]
  11. A. Gijsenij, T. Gevers, and M. P. Lucassen, “A perceptual analysis of distance measures for color constancy,” J. Opt. Soc. Am. A 26, 2243–2256 (2009). [CrossRef]
  12. J. Farrell, F. Xiao, P. Catrysse, and B. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2003). [CrossRef]
  13. G. D. Finlayson, “Color constancy in diagonal chromaticity space,” in IEEE Proceedings of Fifth International Conference on Computer Vision (IEEE Computer Society, 1995), pp. 218–223.
  14. “Graphic technology—Standard object colour spectra database for colour reproduction evaluation (SOCS),” Technical Report ISO/TR 16066:2003(E) (International Organization for Standardization, 2003).
  15. K. Barnard, V. Cardei, and B. Funt, “A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data,” IEEE Trans. Image Process. 11, 972–984 (2002). [CrossRef]
  16. G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  17. E. H. Land, “The retinex theory of color vision,” Sci. Am. 237(6), 108–128 (1977). [CrossRef]
  18. D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vis. 5, 5–35 (1990). [CrossRef]
  19. F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics 1, 80–83 (1945). [CrossRef]
  20. H. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown,” J. Am. Stat. Assoc. 62, 399–402 (1967). [CrossRef]
  21. N. Ohta and A. R. Robertson, Colorimetry: Fundamentals and Applications (Wiley, 2005).
  22. M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard default color space for the Internet—sRGB,” Version 1.10 (5Nov.1996) www.w3.org/Graphics/Color/sRGB.html .
  23. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas (Wiley, 1967).
  24. G. Sharma, Digital Color Imaging Handbook (CRC Press, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited