OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 394–399

A computational inverse diffraction grating problem

Gang Bao, Peijun Li, and Haijun Wu  »View Author Affiliations


JOSA A, Vol. 29, Issue 4, pp. 394-399 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000394


View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Consider the diffraction of a time-harmonic plane wave incident on a perfectly reflecting periodic surface. A continuation method on the wavenumber is developed for the inverse diffraction grating problem, which reconstructs the grating profile from measured reflected waves a constant distance away from the structure. Numerical examples are presented to show the validity and efficiency of the proposed method.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(290.3200) Scattering : Inverse scattering

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 23, 2011
Manuscript Accepted: December 16, 2011
Published: March 2, 2012

Citation
Gang Bao, Peijun Li, and Haijun Wu, "A computational inverse diffraction grating problem," J. Opt. Soc. Am. A 29, 394-399 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-4-394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Nédélec and F. Starling, “Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations,” SIAM J. Math. Anal. 22, 1679–1701 (1991). [CrossRef]
  2. G. Bao, D. Dobson, and J. A. Cox, “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029–1042 (1995). [CrossRef]
  3. O. Bruno and F. Reitich, “Numerical solution of diffraction problems: a method of variation of boundaries,” J. Opt. Soc. Am. A 10, 1168–1175 (1993). [CrossRef]
  4. Z. Chen and H. Wu, “An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures,” SIAM J. Numer. Anal. 41, 799–826 (2003). [CrossRef]
  5. R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, 1980).
  6. G. Bao, L. Cowsar, and W. Masters, eds., Mathematical Modeling in Optical Science, Vol. 22 of Frontiers in Applied Mathematics (SIAM, 2001).
  7. D. Dobson, “Optimal design of periodic antireflective structures for the Helmholtz equation,” Eur. J. Appl. Math. 4, 321–340 (1993). [CrossRef]
  8. D. Dobson, “Optimal shape design of blazed diffraction grating,” Appl. Math. Optim. 40, 61–78 (1999). [CrossRef]
  9. J. Elschner and G. Schmidt, “Diffraction in periodic structures and optimal design of binary gratings: I. direct problems and gradient formulas,” Math. Methods Appl. Sci. 21, 1297–1342 (1998). [CrossRef]
  10. J. Elschner and G. Schmidt, “Numerical solution of optimal design problems for binary gratings, J. Comput. Phys. 146, 603–626 (1998). [CrossRef]
  11. A. Kirsch, “Uniqueness theorems in inverse scattering theory for periodic structures,” Inverse Probl. 10, 145–152 (1994). [CrossRef]
  12. G. Bao, “A unique theorem for an inverse problem in periodic diffractive optics,” Inverse Probl. 10, 335–340 (1994). [CrossRef]
  13. H. Ammari, “Uniqueness theorems for an inverse problem in a doubly periodic structure,” Inverse Probl. 11, 823–833 (1995). [CrossRef]
  14. F. Hettlich and A. Kirsch, “Schiffer’s theorem in inverse scattering theory for periodic structures,” Inverse Probl. 13, 351–361 (1997). [CrossRef]
  15. G. Bao and A. Friedman, “Inverse problems for scattering by periodic structure,” Arch. Ration. Mech. Anal. 132, 49–72 (1995). [CrossRef]
  16. G. Bao and Z. Zhou, “An inverse problem for scattering by a doubly periodic structure,” Trans. Am. Math. Soc. 350, 4089–4103 (1998). [CrossRef]
  17. G. Bao, H. Zhang, and J. Zou, “Unique determination of periodic polyhedral structures by scattered electromagnetic fields,” Trans. Am. Math. Soc. 363, 4527–4551 (2011). [CrossRef]
  18. G. Bruckner, J. Cheng, and M. Yamamoto, “An inverse problem in diffractive optics: conditional stability,” Inverse Probl. 18, 415–433 (2002). [CrossRef]
  19. D. Colton and R. Kress, “Inverse Acoustic and Electromagnetic Scattering Theory,” 2nd ed., Vol. 93 of Applied Mathematical Sciences (Springer-Verlag, 1998).
  20. N. García and M. Nieto-Vesperinas, “Near-field optics inverse-scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993). [CrossRef]
  21. J. B. Keller, “Singularities and Rayleigh’s hypothesis for diffraction gratings,” J. Opt. Soc. Am. A 17, 456–457 (2000). [CrossRef]
  22. R. Millar, “The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers,” Radio Sci. 8, 785–796 (1973). [CrossRef]
  23. K. Ito and F. Reitich, “A high-order perturbation approach to profile reconstruction: I. perfectly conducting gratings,” Inverse Probl. 15, 1067–1085 (1999). [CrossRef]
  24. T. Arens and A. Kirsch, “The factorization method in inverse scattering from periodic structures,” Inverse Probl. 19, 1195–1211 (2003). [CrossRef]
  25. F. Hettlich, “Iterative regularization schemes in inverse scattering by periodic structures,” Inverse Probl. 18, 701–714 (2002). [CrossRef]
  26. G. Bruckner and J. Elschner, “A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles,” Inverse Probl. 19, 315–329 (2003). [CrossRef]
  27. J. Elschner, G. Hsiao, and A. Rathsfeld, “Grating profile reconstruction based on finite elements and optimization techniques,” SIAM J. Appl. Math. 64, 525–545 (2003). [CrossRef]
  28. Y. Chen, “Inverse scattering via Heisenberg uncertainty principle,” Inverse Probl. 13, 253–282 (1997). [CrossRef]
  29. G. Bao and P. Li, “Inverse medium scattering problems for electromagnetic waves, SIAM J. Appl. Math. 65, 2049–2066 (2005). [CrossRef]
  30. G. Bao and P. Li, “Inverse medium scattering for the Helmholtz equation at fixed frequency,” Inverse Probl. 21, 1621–1641 (2005). [CrossRef]
  31. G. Bao and P. Li, “Numerical solution of an inverse medium scattering problem for Maxwell’s equations at fixed frequency,” J. Comput. Phys. 228, 4638–4648 (2009). [CrossRef]
  32. R. Coifman, M. Goldberg, T. Hrycak, M. Israeli, and V. Rokhlin, “An improved operator expansion algorithm for direct and inverse scattering computations,” Waves Random Media 9, 441–457 (1999). [CrossRef]
  33. H. Ammari, J. Garnier, H. Kang, M. Lim, and K. Solna, “Multistatic imaging of extended targets,” SIAM J. Imaging Sci., to be published.
  34. H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, 1996).
  35. G. Bao, Z. Chen, and H. Wu, “Adaptive finite element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106–1114 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited