OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 400–409

General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices

Matthew Hayman and Jeffrey P. Thayer  »View Author Affiliations


JOSA A, Vol. 29, Issue 4, pp. 400-409 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000400


View Full Text Article

Enhanced HTML    Acrobat PDF (591 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization measurements have become nearly indispensible in lidar cloud and aerosol studies. Despite polarization’s widespread use in lidar, its theoretical description has been widely varying in accuracy and completeness. Incomplete polarization lidar descriptions invariably result in poor accountability for scatterer properties and instrument effects, reducing data accuracy and disallowing the intercomparison of polarization lidar data between different systems. We introduce here the Stokes vector lidar equation, which is a full description of polarization in lidar from laser output to detector. We then interpret this theoretical description in the context of forward polar decomposition of Mueller matrices where distinct polarization attributes of diattenuation, retardance, and depolarization are elucidated. This decomposition can be applied to scattering matrices, where volumes consisting of randomly oriented particles are strictly depolarizing, while oriented ice crystals can be diattenuating, retarding, and depolarizing. For instrument effects we provide a description of how different polarization attributes will impact lidar measurements. This includes coupling effects due to retarding and depolarization attributes of the receiver, which have no description in scalar representations of polarization lidar. We also describe how the effects of polarizance in the receiver can result in nonorthogonal polarization detection channels. This violates one of the most common assumptions in polarization lidar operation.

© 2012 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(260.5430) Physical optics : Polarization

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 27, 2011
Revised Manuscript: November 28, 2011
Manuscript Accepted: December 21, 2011
Published: March 2, 2012

Citation
Matthew Hayman and Jeffrey P. Thayer, "General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices," J. Opt. Soc. Am. A 29, 400-409 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-4-400


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Schotland, K. Sassen, and R. J. Stone, “Observations by lidar of linear depolarization ratios by hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971). [CrossRef]
  2. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991). [CrossRef]
  3. M. Mishchenko and J. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995). [CrossRef]
  4. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990). [CrossRef]
  5. G. Gimmestad, “Reexamination of depolarization in lidar measurements,” Appl. Opt. 47, 3795–3802 (2008). [CrossRef]
  6. E. J. Yorks, D. L. Hlavka, W. D. Hart, and M. J. McGill, “Statistics of cloud optical properties from airborne lidar measurements,” J. Atmos. Ocean. Technol. 28, 869–883 (2011). [CrossRef]
  7. J. D. Houston and A. I. Carswell, “Four-component polarization measurement of lidar atmospheric scattering,” Appl. Opt. 17, 614–620 (1978). [CrossRef]
  8. M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt. 45, 4878–4887 (2006). [CrossRef]
  9. C. J. Flynn, A. Mendoza, Y. Zheng, and S. Mathur, “Novel polarization-sensitive micropulse lidar measurement technique,” Opt. Express 15, 2785–2790 (2007). [CrossRef]
  10. B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43, 6620–6628 (2004). [CrossRef]
  11. G. G. Matvienko, I. V. Samokhvalov, and B. V. Kaul, “Research of the cirrus structure with a polarization lidar: parameters of particle orientation in crystal clouds,” Proc. SPIE 5571, 393–400 (2004). [CrossRef]
  12. A. Ben-David, “Mueller matrices and information derived from linear polarization lidar measurements: theory,” Appl. Opt. 37, 2448–2463 (1998). [CrossRef]
  13. Y. Hu, P. Yang, B. Lin, G. Gibson, and C. Hostetler, “Discriminating between spherical and non-spherical scatterers,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003). [CrossRef]
  14. Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transfer 100, 470–482 (2006). [CrossRef]
  15. J. Sanz, J. Saiz, F. González, and F. Moreno, “Polar decomposition of the Mueller matrix: a polarimetric rule of thumb for square-profile surface structure recognition,” Appl. Opt. 50, 3781–3788 (2011). [CrossRef]
  16. N. Ghosh, M. Wood, S. Li, R. Weisel, B. Wilson, R. Li, and I. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009). [CrossRef]
  17. J. Chung, W. Jung, M. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038–3045 (2007). [CrossRef]
  18. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  19. M. Borne and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1999).
  20. B. V. Kaul, “Lidar equation for the case of sensing optically anisotropic media,” Proc. SPIE 3495, 332–339 (1998). [CrossRef]
  21. I. Mattis, M. Tesche, M. Grein, V. Freudenthaler, and D. Müller, “Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme,” Appl. Opt. 48, 2742–2751 (2009). [CrossRef]
  22. J. Gil and E. Bernabéu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from its Mueller matrix,” Optik 76, 67–71 (1987).
  23. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [CrossRef]
  24. R. Ossikovski, A. Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689–691 (2007). [CrossRef]
  25. M. Anastasiadou, S. Hatit, R. Ossikovski, S. Guyot, and A. Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. Eur. Opt. Soc. Rapid Pub. 2, 07018 (2007). [CrossRef]
  26. C. Ferreira, I. S. José, J. J. Gil, and J. M. Correas, “Geometric modelling of polarimetric transformations,” Monografías del Seminario Matemático García de Galdeano 33, 115–119(2006).
  27. T. Tudor and V. Manea, “Ellipsoid of the polarization degree: a vectorial, pure operatorial Pauli algebraic approach,” J. Opt. Soc. Am. B 28, 596–601 (2011). [CrossRef]
  28. B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surface and maps for analysis of depolarization,” Opt. Express 12, 4941–4958 (2004). [CrossRef]
  29. R. Simon, “Nondepolarizing systems and degree of polarization,” Opt. Commun. 77, 349–354 (1990). [CrossRef]
  30. G. Strang, Linear Algebra and Its Applications, 3rd ed.(Thomson Learning, 1988).
  31. R. A. Chipman, “Mechanics of polarization ray tracing,” Opt. Eng. 34, 1636–1645 (1995). [CrossRef]
  32. H. van de Hulst, Light Scattering by Small Particles (Wiley, 1981).
  33. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  34. J. Sanz, P. Albella, F. Moreno, J. Saiz, and F. González, “Application of the polar decomposition to light scattering particle systems,” J. Quant. Spectrosc. Radiat. Transfer 110, 1369–1374 (2009). [CrossRef]
  35. M. Hayman and J. Thayer, “Explicit description of polarization coupling in lidar applications,” Opt. Lett. 34, 611–613 (2009). [CrossRef]
  36. R. Simon and N. Mukunda, “Minimal three-component SU(2) gadget for polarization optics,” Phys. Lett. A 143, 165–169 (1990). [CrossRef]
  37. V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. S. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17, 279–284 (1996). [CrossRef]
  38. D. H. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
  39. M. Hayman and J. Thayer, “Lidar polarization measurements of PMCs,” J. Atmos. Sol. Terr. Phys. 73, 2110–2117 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited