OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 417–425

Influences of twist phenomenon of partially coherent field with uniform-intensity diffractive axicons

Abdu. A. Alkelly, M. Shukri, and Y. S. Alarify  »View Author Affiliations


JOSA A, Vol. 29, Issue 4, pp. 417-425 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000417


View Full Text Article

Enhanced HTML    Acrobat PDF (1402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of twist phenomenon (beam rotation) of a partially coherent field are studied on the operation of two classes of uniform-intensity diffractive axicons. A general theory of axicon image formation is developed, discussed, and examined. We show that the intensity of the diffracted field is a multiple Bessel field, and only the energy of the zero-order Bessel field diffracts along the propagation axes. We also show that, at any twist strength in all correlation levels, the images can be evaluated by using the stationary-phase method. The three-dimensional stationary-phase formula of axicon images is derived. Such formula may be used in fast image evaluation, for designing diffractive axicons that perform a uniform axial intensity in a twisted partially coherent field.

© 2012 Optical Society of America

OCIS Codes
(110.4980) Imaging systems : Partial coherence in imaging
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Imaging Systems

History
Original Manuscript: October 27, 2011
Revised Manuscript: December 17, 2011
Manuscript Accepted: December 18, 2011
Published: March 7, 2012

Citation
Abdu. A. Alkelly, M. Shukri, and Y. S. Alarify, "Influences of twist phenomenon of partially coherent field with uniform-intensity diffractive axicons," J. Opt. Soc. Am. A 29, 417-425 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-4-417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. R. Staroński, J. Sochacki, Z. Jaroszewicz, and A. Kolodziejczyk, “ Lateral distribution and flow of energy in uniform-intensity axicons,” J. Opt. Soc. Am. A 9, 2091–2094 (1992). [CrossRef]
  2. I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,” Opt. Lett. 35, 2828–2830 (2010). [CrossRef]
  3. A. Thaning, A. T. Friberg, and Z. Jaroszewicz, “Synthesis of diffractive axicons for partially coherent light based on asymptotic wave theory,” Opt. Lett. 26, 1648–1650 (2001). [CrossRef]
  4. V. P. Koronkevich, I. A. Mikhaltsova, E. G. Churin, and Yu. I. Yurlov, “Lensacon,” Appl. Opt. 34, 5761–5772 (1995). [CrossRef]
  5. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef]
  6. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilenses: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991). [CrossRef]
  7. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, and L. R. Staronski, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18, 1893–1895 (1993). [CrossRef]
  8. S. Yu. Popov and A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998). [CrossRef]
  9. S. Yu. Popov and A. T. Friberg, “Design of diffractive axicons for partially coherent light,” Opt. Lett. 23, 1639–1641 (1998). [CrossRef]
  10. J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A 1, 730–734 (1999). [CrossRef]
  11. A. Thaning, A.T. Friberg, S.Yu. Popov, and Z. Jaroszewicz, “Design of diffractive axicons producing uniform line images in Gaussian Schell-model illumination,” J. Opt. Soc. Am. A 19, 491–496 (2002). [CrossRef]
  12. A. T. Friberg and S. Yu. Popov, “Radiometric description of intensity and coherence in generalized holographic axicon images,” Appl. Opt. 35, 3039–3046 (1996). [CrossRef]
  13. A. T. Friberg and S. Yu. Popov, “Effects of partial spatial coherence with uniform-intensity diffractive axicons,” J. Opt. Soc. Am. A 16, 1049–1058 (1999). [CrossRef]
  14. A. A. Alkelly, M. A. Shukri, and Y. S. Alarify, “Intensity distribution and focal depth of axicon illuminated by Gaussian Schell-model beam,” Opt. Commun. 284, 4658–4662 (2011). [CrossRef]
  15. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993). [CrossRef]
  16. K. Saundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993). [CrossRef]
  17. A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994). [CrossRef]
  18. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A 13, 743–750 (1996). [CrossRef]
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  20. G. Arfken, Mathematical Methods For Physicists, 6th ed.(Elsevier, 2005).
  21. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 7th ed. (Elsevier, 2007).
  22. M. R. Perrone, A. Piegari, and S. Scaglione, “On the super-Gaussian unstable resonators for high-gain short-pulse laser media,” IEEE J. Quantum Electron. 29, 1423–1427 (1993). [CrossRef]
  23. S. Yu. Popov, A. T. Friberg, M. Honkanen, J. Lautanen, J. Turunen, and B. Schnabel, “Apodized annular-aperture diffractive axicons fabricated by continuous-path-control electron beam lithography,” Opt. Commun. 154, 359–367 (1998). [CrossRef]
  24. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994). [CrossRef]
  25. W. Wang, A. T. Friberg, and E. Wolf, “Focusing of partially coherent light in systems of large Fresnel numbers,” J. Opt. Soc. Am. A 14, 491–497 (1997). [CrossRef]
  26. A. T. Friberg, E. Tervonen, and J. Turunen, “Focusing of twisted Gaussian Schell-model beams,” Opt. Commun. 106, 127–132 (1994). [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited