OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 426–430

Broadband microwave Luneburg lens made of gradient index metamaterials

Yoke Leng Loo, Yarong Yang, Ning Wang, Yun Gui Ma, and Chong Kim Ong  »View Author Affiliations


JOSA A, Vol. 29, Issue 4, pp. 426-430 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000426


View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Luneburg lenses are able to form perfect focus that is free of aberration. Because of the varying refractive index throughout the lens, incoming electromagnetic waves can travel in a curved path and be guided to focus at the back of the lens. The implementation of Luneburg lenses is often difficult due to the challenges in creating a medium with varying refractive index using normal materials. This problem can be overcome with the use of gradient index metamaterials. We report a two dimensional Luneburg lens made of gradient index metamaterials. It consists of 17 concentric shells with etched patterns on a printed circuit board working in microwave X band frequency. The broad properties of the Luneburg lens are then discussed.

© 2012 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.3630) Optical design and fabrication : Lenses
(350.6980) Other areas of optics : Transforms
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Imaging Systems

History
Original Manuscript: September 19, 2011
Revised Manuscript: November 20, 2011
Manuscript Accepted: November 30, 2011
Published: March 7, 2012

Citation
Yoke Leng Loo, Yarong Yang, Ning Wang, Yun Gui Ma, and Chong Kim Ong, "Broadband microwave Luneburg lens made of gradient index metamaterials," J. Opt. Soc. Am. A 29, 426-430 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-4-426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Schurig, “An aberration-free lens with zero F-number,” New J. Phys. 10, 115034 (2008). [CrossRef]
  2. U. Leonhardt and T. G. Philbin, Geometry and Light: the Science of Invisibility (Dover, 2010).
  3. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639–642 (2009). [CrossRef]
  4. Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 033016 (2011). [CrossRef]
  5. Q. Cheng, H. F. Ma, and T. J. Cui, “Broadband planar Luneburg lens based on complementary materials,” Appl. Phys. Lett. 95, 181901 (2009). [CrossRef]
  6. R. K. Luneburg, Mathematical Theory of Optics (University of California, 1964).
  7. S. P. Morgan, “General solution of the Luneburg lens problem,” J. Appl. Phys. 29, 1358–1367 (1958). [CrossRef]
  8. J. Graeme, A. Parfitt, and J. Kot, “A case for the Luneburg lens as the antenna element for the Square Kilometre Array radio telescope,” Radio Sci. Bull. 293, 32–38 (2000); also found at http://www.atnf.csiro.au/projects/askap/techdocs/SKA_Luneburg_Paper_6%28James%29.pdf .
  9. C. H. Walter, “Surface-wave Luneberg lens antennas,” IEEE Trans. Antennas Propag. 8, 508–515 (1960). [CrossRef]
  10. Y. J. Park and W. Wiesbeck, “Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts,” IEEE Antennas Wireless Propag. Lett 1, 128–130(2002). [CrossRef]
  11. L. Xue and V. F. Fusco, “Printed holey plate Luneburg lens,” Microwave Opt. Technol. Lett. 50, 378–380 (2008). [CrossRef]
  12. P. Hall, S. Kutuzov, and R. Dagkesamanskii, “A prototype Luneburg lens antenna,” http://www.atnf.csiro.au/projects/askap/techdocs/prototype_luneburg.pdf .
  13. Meta Group, Duke University, “Electromagnetic metamaterials,” http://people.ee.duke.edu/~drsmith/about_metamaterials.html .
  14. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006). [CrossRef]
  15. N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformation,” Phys. Rev. Lett. 105, 193902 (2010). [CrossRef]
  16. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010). [CrossRef]
  17. A. Demetriadou and H. Yang, “Slim Luneburg lens for antenna applications,” Opt. Express 19, 19925–19934 (2011). [CrossRef]
  18. L. Zhao, X. Chen, and C. K. Ong, “Visual observation and quantitative measurement of the microwave absorbing effect at X band,” Rev. Sci. Instrum. 79, 124701 (2008). [CrossRef]
  19. N. Kundtz, “Advances in complex artificial electromagnetic media,” Ph.D. thesis (Duke University, Department of Physics, 2009).
  20. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of permittivity and permeability of metamaterials from scattering data,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  21. H. F. Ma, X. Chen, X. M. Yang, H. S. Xu, Q. Chen, and T. J. Cui, “A broadband metamaterial cylindrical lens antenna,” Chin. Sci. Bull. 55, 2066–2070 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited