OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 498–506

High topographical accuracy by optical shot noise reduction in digital holographic microscopy

Miguel León-Rodríguez, Ramón Rodríguez-Vera, Juan A. Rayas, and Sergio Calixto  »View Author Affiliations

JOSA A, Vol. 29, Issue 4, pp. 498-506 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we present a new method to reduce the shot noise in phase imaging of digital holograms. A spatial averaging process of phase images reconstructed at different reconstruction distances is performed, with the reconstruction distance range being specified by the numerical focus depth of the optical system. An improved phase image is attained with a 50% shot noise reduction. We use the integral of the angular spectrum as a reconstruction method to obtain a single-object complex amplitude that is needed to perform our proposal. We also show the corresponding simulations and experimental results. The topography of a homemade TiO2 stepwise of 100 nm high was measured and compared with the atomic force microscope results.

© 2012 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(110.0180) Imaging systems : Microscopy
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness
(090.1995) Holography : Digital holography
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:

Original Manuscript: September 1, 2011
Revised Manuscript: December 13, 2011
Manuscript Accepted: December 16, 2011
Published: March 16, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Miguel León-Rodríguez, Ramón Rodríguez-Vera, Juan A. Rayas, and Sergio Calixto, "High topographical accuracy by optical shot noise reduction in digital holographic microscopy," J. Opt. Soc. Am. A 29, 498-506 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  3. U. Schnars and W. Jüptner, “Direct recording of holograms by to CCD-target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  4. V. Kebbel, H. J. Hartmann, and W. Jüptner, “New approach for testing of aspherical micro-optics with high numerical aperture,” Proc. SPIE 4451, 345–355 (2001). [CrossRef]
  5. C. Furlong and R. J. Pryputniewics, “Optoelectronic characterization of shape and deformations of MEMS accelerometers used in transportation applications,” Opt. Eng. 42, 1223–1231 (2003). [CrossRef]
  6. F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006). [CrossRef]
  7. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenbergerg, and G. Von Bally, “Characterization of light emitting diodes (LEDs) for applications in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Eng. 46, 499–507 (2008). [CrossRef]
  8. D. Carl, B. Kemper, G. Wernicke, and G. Von Bally, “Parameter optimized digital holographic microscope for high resolution living cells analysis,” Appl. Opt. 43, 6536–6544 (2004). [CrossRef]
  9. H. Sun, M. Player, J. Watson, D. Hendry, R. Perkins, G. Gust, and D. Paterson, “The use of digital/electronic holography for biological applications,” J. Opt. A 7, S399–S407 (2005). [CrossRef]
  10. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef]
  11. C. Mann, L. Yu, and M. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. 5, 21–31 (2006).
  12. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow digital with digital in-line holographic microscopy,” Optik 119, 419–423 (2008). [CrossRef]
  13. P. Ferraro, S. Grilli, D. Alferi, S. Of Nicola, A. Finizio, G. Pieranttini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005). [CrossRef]
  14. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Monfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006). [CrossRef]
  15. J. I. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282, 3873–3877 (2009). [CrossRef]
  16. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberration compensations in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006). [CrossRef]
  17. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6, 100–103 (2008). [CrossRef]
  18. T. Baumbach, E. Colenovic, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by uses of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006). [CrossRef]
  19. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digitial holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8, 653–655 (2010)
  20. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Market, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007). [CrossRef]
  21. F. Dubois, M. Novella, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with to laser source,” Appl. Opt. 43, 1131–1139 (2004). [CrossRef]
  22. J. kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). [CrossRef]
  23. M. Potcoava and M. Km, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9–H15 (2009). [CrossRef]
  24. F. Dubois, L. Joannes, and J. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  25. L. Bergmann and C. Schaefer, Optics of Waves and Particles (Gruyter, 2003).
  26. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  27. J. W. Goodman, Statistical Optics (Wiley, 1985).
  28. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited