OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 525–530

Three-dimensional resolvability in an integral imaging system

Zahra Kavehvash, Manuel Martinez-Corral, Khashayar Mehrany, Saeed Bagheri, Genaro Saavedra, and Hector Navarro  »View Author Affiliations


JOSA A, Vol. 29, Issue 4, pp. 525-530 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000525


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of three-dimensional (3D) resolvability of an integral imaging system is thoroughly investigated in this research. The general concept of 3D resolution fails to describe the 3D discrimination completely. Then the concepts of the depth-resolution plane and lateral-resolution plane are introduced to show the difference between the conventional 3D spatial resolution and the newly introduced 3D resolvability. Therefore, the different properties of these planes for differentiating lateral spatial variations and axial variations are analyzed in this paper. The theoretical statements are demonstrated experimentally.

© 2012 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.6880) Imaging systems : Three-dimensional image acquisition

ToC Category:
Imaging Systems

History
Original Manuscript: November 22, 2011
Revised Manuscript: January 23, 2012
Manuscript Accepted: January 23, 2012
Published: March 21, 2012

Citation
Zahra Kavehvash, Manuel Martinez-Corral, Khashayar Mehrany, Saeed Bagheri, Genaro Saavedra, and Hector Navarro, "Three-dimensional resolvability in an integral imaging system," J. Opt. Soc. Am. A 29, 525-530 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-4-525


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  2. S. M. Faris, “Novel 3D stereoscopic imaging technology,” Proc. SPIE 2177, 180–195 (1994). [CrossRef]
  3. S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002). [CrossRef]
  4. N. A. Dodgson, “Autostereo displays: 3D without glasses,” presented at EID ’97: Electronic Information Displays, Esher, Surrey, November18–201997.
  5. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005). [CrossRef]
  6. R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010). [CrossRef]
  7. B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” Eng. Sci. Educ. J. 2, 196–200 (1993).
  8. M. G. Lippmann, “La photographie intégrale,” C.R. Acad. Sci. 146, 446–551 (1908).
  9. W. Ijsselsteijn, H. de Ridder, and J. Vliegen, “Effects of stereoscopic filming parameters and display duration on the subjective assessment of eye strain,” Proc. SPIE 3957, 12–22(2000). [CrossRef]
  10. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude modulated microlens array,” Appl. Opt. 43, 5806–5813 (2004). [CrossRef]
  11. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237–5242 (2004). [CrossRef]
  12. A. Castro, Y. Frauel, and B. Javidi, “Integral imaging with large depth of field using an asymmetric phase mask,” Opt. Express 15, 10266–10273 (2007). [CrossRef]
  13. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002). [CrossRef]
  14. A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003). [CrossRef]
  15. Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Spatial frequency multiple access technique in three-dimensional integral imaging,” J. Display Technol., 8, 138–144 (2012). [CrossRef]
  16. Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Field of view extension using frequency division multiple access technique: numerical analysis,” Proc. SPIE 8043, 80430F(2011). [CrossRef]
  17. Y. Kim, J. Kim, J. M. Kang, J. H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007). [CrossRef]
  18. J. S. Jang, Y. S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector large-scale high-resolution three-dimensional display,” Opt. Express 12, 557–563(2004). [CrossRef]
  19. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004). [CrossRef]
  20. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007). [CrossRef]
  21. M. Martinez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Progress in Optics, Vol. 53, E. Wolf, ed. (Elsevier, 2009), pp. 1–67. [CrossRef]
  22. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998). [CrossRef]
  23. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968). [CrossRef]
  24. T. Okoshi, “Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971). [CrossRef]
  25. R. Kingslake, Lenses in Photography: The Practical Guide to Optics for Photographers (Garden City, 1951).
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(Cambridge University, 1997).
  27. S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited