OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 541–544

Modal dynamics in multimode fibers

Moti Fridman, Haim Suchowski, Micha Nixon, Asher A. Friesem, and Nir Davidson  »View Author Affiliations

JOSA A, Vol. 29, Issue 4, pp. 541-544 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamics of modes and their states of polarizations in multimode fibers as a function of time, space, and wavelength are experimentally and theoretically investigated. The results reveal that the states of polarizations are displaced in Poincaré sphere representation when varying the angular orientations of the polarization at the incident light. Such displacements, which complicate the interpretation of the results, are overcome by resorting to modified Poincaré sphere representation. With such modification it should be possible to predict the output modes and their state of polarization when the input mode and state of polarization are known.

© 2012 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: August 22, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: January 11, 2012
Published: March 22, 2012

Moti Fridman, Haim Suchowski, Micha Nixon, Asher A. Friesem, and Nir Davidson, "Modal dynamics in multimode fibers," J. Opt. Soc. Am. A 29, 541-544 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen, and P. Pleunis, “Development of system specification for laser-optimized 50 μm multimode fiber for multigigabit short-wavelength LANs,” J. Lightwave Technol. 21, 1256–1275 (2003). [CrossRef]
  2. C. Lethien, C. Loyez, and J. P. Vilcot, “Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications,” J. Lightwave Technol. 17, 2793–2795 (2005).
  3. J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000). [CrossRef]
  4. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992). [CrossRef]
  5. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single mode fibers,” Electron. Lett. 22, 1029–1030 (1986). [CrossRef]
  6. W. Shieh and H. Kogelnik, “Dynamic eigenstates of polarization,” IEEE Photon. Technol. Lett. 13, 40–42 (2001). [CrossRef]
  7. C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett. 16, 372–374 (1991). [CrossRef]
  8. D. Andrescianci, F. Curti, F. Matera, and B. Daino, “Measurement of the group-delay difference between the principal state of polarization on a low-birefringence terrestrial fiber cable,” Opt. Lett. 12, 844–846 (1987). [CrossRef]
  9. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal state in a 147 km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190(1988). [CrossRef]
  10. G. P. Agrawal, Fiber-Optic Communication System, 3rd ed. (Wiley, 2002).
  11. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). [CrossRef]
  12. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999). [CrossRef]
  13. G. S. Agarwal, “SU(2) structure of the Poincaré sphere for light beams with orbital angular momentum,” J. Opt. Soc. Am. A 16, 2914–2916 (1999). [CrossRef]
  14. S. Fan and J. M. Kahn, “Principal modes in multimode waveguides,” Opt. Lett. 30, 135–137 (2005). [CrossRef]
  15. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, “Principal modes in graded-index multimode fiber in presence of spatial and polarization mode coupling,” J. Lightwave Technol. 27, 1248–1261 (2009). [CrossRef]
  16. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Principal modes in fiber amplifiers,” Opt. Lett. 36, 388–390 (2011). [CrossRef]
  17. M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, “Real-time measurement of unique space-variant polarizations,” Opt. Express 18, 10805–10812(2010). [CrossRef]
  18. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Express 34, 2525–2527 (2009).
  19. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008). [CrossRef]
  20. R. Ulrich and A. Simon, “Polarization optics of twisted single mode fiber,” Appl. Opt. 18, 2241–2251 (1979). [CrossRef]
  21. D. M. Shyroki, “Exact equivalent straight waveguide model for bent and twisted waveguides,” IEEE Trans. Microwave Theory Tech. 56, 414–419 (2008). [CrossRef]
  22. H. Suchowski, Y. Silberberg, and D. B. Uskov, “Pythagorean coupling: Complete population transfer in a four-state system,” Phys. Rev. A 84, 013414 (2011).
  23. P. Du Val, “Homographies, quaternions and rotations,” in Oxford Mathematical Monographs (Clarendon, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited