OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 567–573

From stationary annular rings to rotating Bessel beams

Angela Dudley and Andrew Forbes  »View Author Affiliations

JOSA A, Vol. 29, Issue 4, pp. 567-573 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we use a phase-only spatial light modulator (SLM) to mimic a ring-slit aperture, containing multiple azimuthally varying phases at different radial positions. The optical Fourier transform of such an aperture is currently known and its intensity profile has been shown to rotate along its propagation axis. Here we investigate the near-field of the ring-slit aperture and show, both experimentally and theoretically, that although the near-field possesses similar attributes to its Fourier transform, its intensity profile exhibits no rotation as it propagates.

© 2012 Optical Society of America

OCIS Codes
(090.1995) Holography : Digital holography
(070.3185) Fourier optics and signal processing : Invariant optical fields
(050.4865) Diffraction and gratings : Optical vortices
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: November 28, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: December 21, 2011
Published: March 22, 2012

Angela Dudley and Andrew Forbes, "From stationary annular rings to rotating Bessel beams," J. Opt. Soc. Am. A 29, 567-573 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and the transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  2. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301(2000). [CrossRef]
  3. H. I. Sztul and R. R. Alfano, “The Poynting vector and angular momentum of Airy beams,” Opt. Express 16, 9411–9416(2008). [CrossRef]
  4. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  5. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef]
  6. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]
  7. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental Two-Photon Three-Dimensional Quantum Entanglement,” Phys. Rev. Lett. 89, 240401–4 (2002). [CrossRef]
  8. J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
  9. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher-order Bessel beams,” Opt. Express 17, 23389–23395 (2009). [CrossRef]
  10. R. Rop, A. Dudley, C. López-Mariscal, and A. Forbes, “Measuring the rotation rates of superpositions of higher-order Bessel beams,” J. Mod. Opt. 59, 259–267 (2011) http://dx.doi.org/10.1080/09500340.2011.631714 .
  11. V. V. Kotlyar, S. N. Khonina, R. V. Skidanov, and V. A. Soifer, “Rotation of laser beams with zero of the orbital angular momentum,” Opt. Commun. 274, 8–14 (2007). [CrossRef]
  12. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  13. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657–659 (2003). [CrossRef]
  14. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef]
  15. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  16. D. W. K. Wong and G. Chen, “Redistribution of the zero order by the use of a phase checkerboard pattern in computer generated holograms,” Appl. Opt. 47, 602–610 (2008). [CrossRef]
  17. A. Dudley, R. Vasilyeu, V. Belyi, N. Khilo, P. Ropot, and A. Forbes, “Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator,” Opt. Commun. 285, 5–12 (2012). [CrossRef]
  18. T. A. King, W. Hogervorst, N. S. Kazak, N. A. Khilo, and A. A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (620 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited