OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 644–648

Far-infrared properties of hybrid plasmonic geometries

Xinchao Lu, Carsten Rockstuhl, and Weili Zhang  »View Author Affiliations

JOSA A, Vol. 29, Issue 4, pp. 644-648 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic structures made of periodically arranged metallic rings integrated into subwavelength holes are investigated at the far-infrared terahertz frequencies. The emergence and the interplay of various resonances sustained by such plasmonic samples are elucidated. To reveal a coherent physical picture, relevant dimensions of the samples are modified and their impact on the resonance properties is analyzed. The experimental work is fully supported by numerical simulations. The understanding of the interplay of various resonances will foster applications which require plasmonic substrates to exhibit simultaneously resonances at well-defined frequencies and line widths.

© 2012 Optical Society of America

ToC Category:
Optics at Surfaces

Original Manuscript: October 17, 2011
Revised Manuscript: December 12, 2011
Manuscript Accepted: December 12, 2011
Published: March 30, 2012

Xinchao Lu, Carsten Rockstuhl, and Weili Zhang, "Far-infrared properties of hybrid plasmonic geometries," J. Opt. Soc. Am. A 29, 644-648 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12, 3422–3427 (2004). [CrossRef]
  2. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992). [CrossRef]
  3. M. Lahav, A. Vaskevich, and I. Rubinstein, “Biological sensing using transmission surface plasmon resonance spectroscopy,” Langmuir 20, 7365–7367 (2004). [CrossRef]
  4. F. Capasso, N. Yu, E. Cubukcu, and E. Smythe, “Using plasmonics to shape light beams,” Opt. Photon. News 20, 22–27 (2009).
  5. H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B 28, 558–566 (2011). [CrossRef]
  6. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002). [CrossRef]
  7. F. I. Baida, D. Van Labeke, and B. Guizal, “Enhanced confined lght transmission by single subwavelength apertures in metallic films,” Appl. Opt. 42, 6811–6815 (2003). [CrossRef]
  8. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005).
  9. W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Enhanced mid-infrared transmission through nanoscale metal coaxial-aperture arrays,” Opt. Express 13, 4406–4413 (2005). [CrossRef]
  10. X. Lu, J. Han, and W. Zhang, “Transmission field enhancement of terahertz pulses in plasmonic, rectangular coaxial geometries,” Opt. Lett. 35, 904–906 (2010). [CrossRef]
  11. X. Lu, J. Han, and W. Zhang, “Localized plasmonic properties of subwavelength geometries resonating at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17, 119–129 (2011). [CrossRef]
  12. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef]
  13. C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16, 2080–2090 (2008). [CrossRef]
  14. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  15. J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
  16. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004). [CrossRef]
  17. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  18. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1 (2008).
  19. X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).
  20. C. Dahmen and G. von Plessen, “Optical effects of metallic nanoparticles,” Aust. J. Chem. 60, 447–456 (2007).
  21. X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94, 181106 (2009).
  22. T. Weiland, “A discretization method for the solution of Maxwell’s equations for six-component fields,” Arch. Elektron. Übertragungstech 31, 116–120 (1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited