OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 695–701

Transmission properties in waveguides: an optical streamline analysis

Ángel S. Sanz, José Campos-Martínez, and Salvador Miret-Artés  »View Author Affiliations


JOSA A, Vol. 29, Issue 5, pp. 695-701 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000695


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel approach to study transmission through waveguides in terms of optical streamlines. This theoretical framework combines the computational performance of beam propagation methods with the possibility to monitor the passage of light through the guiding medium by means of these sampler paths. In this way, not only can the optical flow along the waveguide be followed in detail, but also a fair estimate of the transmitted light (intensity) can be accounted for by counting streamline arrivals with starting points statistically distributed according to the input pulse. Furthermore, this approach allows elucidation of the mechanism leading to energy losses, namely, a vortical dynamics, which can be advantageously exploited in optimal waveguide design.

© 2012 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4230) Fiber optics and optical communications : Multiplexing
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 25, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 17, 2012
Published: April 11, 2012

Citation
Ángel S. Sanz, José Campos-Martínez, and Salvador Miret-Artés, "Transmission properties in waveguides: an optical streamline analysis," J. Opt. Soc. Am. A 29, 695-701 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-5-695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011). [CrossRef]
  2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]
  3. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010). [CrossRef]
  4. S. Banerjee and A. Sharma, “Propagation characteristic of optical waveguiding structures by direct solution of the Helmholtz equation for total fields,” J. Opt. Soc. Am. A 6, 1884–1894 (1989). [CrossRef]
  5. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Herlfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Opt. Soc. Am. A 6, 150–162 (2000). [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.
  7. J. Campos-Martíınez and R. D. Coalson, “The wide-angle equation and its solution through the short-time iterative Lanczos method,” Appl. Opt. 42, 1732–1742 (2003). [CrossRef]
  8. H. A. Buchdahl, An Introduction to Hamiltonian Optics(Cambridge University, 1970).
  9. D. Gloge and D. Marcuse, “Formal quantum theory of light rays,” J. Opt. Soc. Am. 59, 1629–1631 (1969). [CrossRef]
  10. W. K. Kahn and S. Yang, “Hamiltonian analysis of beams in an optical slab guide,” J. Opt. Soc. Am. 73, 684–690 (1983). [CrossRef]
  11. M. D. Feit, J. J. A. Fleck, and A. Stieger, “Solution of the Schrödinger equation by a spectral method,” J. Comput. Phys. 47, 412–433 (1982). [CrossRef]
  12. M. D. Feit and J. J. A. Fleck, “Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules,” J. Chem. Phys. 78, 301–308 (1983). [CrossRef]
  13. C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991). [CrossRef]
  14. D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for the design of optical waveguides,” J. Lightwave Technol. 16, 292–300 (1998). [CrossRef]
  15. D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for optical waveguide design: application to Y-branch structures,” Appl. Opt. 38, 3917–3923 (1999). [CrossRef]
  16. S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-model stabilization and radiation-loss suppression,” Phys. Rev. E 67, 036601 (2003). [CrossRef]
  17. M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009). [CrossRef]
  18. A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. 325, 763–784 (2010). [CrossRef]
  19. M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010). [CrossRef]
  20. D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I,” Phys. Rev. 85, 166–179 (1952). [CrossRef]
  21. P. R. Holland, The Quantum Theory of Motion (Cambridge University, 1993).
  22. T. L. Dimitrova and A. Weis, “The wave-particle duality of light: a demonstration experiment,” Am. J. Phys. 76, 137–142 (2008). [CrossRef]
  23. T. L. Dimitrova and A. Weis, “Lecture demonstrations of interference and quantum erasing with single photons,” Phys. Scr. T135, 014003 (2009). [CrossRef]
  24. T. L. Dimitrova and A. Weis, “Single photon quantum erasing: a demonstration experiment,” Eur. J. Phys. 31, 625–637 (2010). [CrossRef]
  25. S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011). [CrossRef]
  26. R. D. Coalson, D. K. Pant, A. Ali, and D. W. Langer, “Computing the eigenmodes of lossy field-induced optical waveguides,” J. Lightwave Technol. 12, 1015–1022 (1994). [CrossRef]
  27. D.-S. Min, D. W. Langer, D. K. Pant, and R. D. Coalson, “Numerical techniques for modeling guided-wave photonic devices,” Fiber Integr. Opt. 16, 331–342 (1997). [CrossRef]
  28. P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977). [CrossRef]
  29. P. K. Tien, “Rules of refractive index and a potential well model of the optical waveguides,” Radio Sci. 16, 437–444 (1981). [CrossRef]
  30. E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. 40, 322–326 (1926). [CrossRef]
  31. I. Bialynicki-Birula, M. Cieplak, and J. Kaminski, Theory of Quanta (Oxford University, 1992).
  32. I. Bialynicki-Birula and Z. Bialynicka-Birula, “Magnetic monopoles in the hydrodynamic formulation of quantum mechanics,” Phys. Rev. D 3, 2410–2412 (1971). [CrossRef]
  33. J. O. Hirschfelder, A. C. Christoph, and W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier,” J. Chem. Phys. 61, 5435–5455 (1974). [CrossRef]
  34. J. O. Hirschfelder, C. J. Goebel, and L. W. Bruch, “Quantized vortices around wavefunction nodes. II,” J. Chem. Phys. 61, 5456–5459 (1974). [CrossRef]
  35. J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision,” J. Chem. Phys. 64, 760–785 (1976). [CrossRef]
  36. J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,” J. Chem. Phys. 65, 470–486 (1976). [CrossRef]
  37. R. E. Wyatt, Quantum Dynamics with Trajectories (Springer, 2005).
  38. A. S. Sanz, F. Borondo, and S. Miret-Artés, “Particle diffraction studied using quantum trajectories,” J. Phys. Condens. Matter 14, 6109–6145 (2002). [CrossRef]
  39. A. S. Sanz, D. López-Durán, and T. González-Lezana, “Investigating transition state resonances in the time domain by means of Bohmian mechanics: the F + HD reaction,” Chem. Phys., doi:10.1016/j.chemphys.2011.07.017 (to be published). [CrossRef]
  40. A. S. Sanz and S. Miret-Artés, “A trajectory-based understanding of quantum interference,” J. Phys. A 41, 435303 (2008). [CrossRef]
  41. A. S. Sanz and S. Miret-Artés, “Determining final probabilities directly from the initial state,” http://arxiv.org/abs/1112.3830 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited