OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 734–740

High order integral equation method for diffraction gratings

Wangtao Lu and Ya Yan Lu  »View Author Affiliations


JOSA A, Vol. 29, Issue 5, pp. 734-740 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000734


View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional integral equation methods for diffraction gratings require lattice sum techniques to evaluate quasi-periodic Green’s functions. The boundary integral equation Neumann-to-Dirichlet map (BIE-NtD) method in Wu and Lu [J. Opt. Soc. Am. A 26, 2444 (2009)], [J. Opt. Soc. Am. A 28, 1191 (2011)] is a recently developed integral equation method that avoids the quasi-periodic Green’s functions and is relatively easy to implement. In this paper, we present a number of improvements for this method, including a revised formulation that is more stable numerically, and more accurate methods for computing tangential derivatives along material interfaces and for matching boundary conditions with the homogeneous top and bottom regions. Numerical examples indicate that the improved BIE-NtD map method achieves a high order of accuracy for in-plane and conical diffractions of dielectric gratings.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 3, 2012
Manuscript Accepted: January 26, 2012
Published: April 19, 2012

Citation
Wangtao Lu and Ya Yan Lu, "High order integral equation method for diffraction gratings," J. Opt. Soc. Am. A 29, 734-740 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-5-734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
  2. G. Bao, L. Cowsar, and W. Masters, Mathematical Modeling in Optical Sciences (Society for Industrial and Applied Mathematics, 2001).
  3. G. Bao, Z. M. Chen, and H. J. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106–1114 (2005). [CrossRef]
  4. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Optica Acta 28, 413–428 (1981). [CrossRef]
  5. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993). [CrossRef]
  6. M. Foresti, L. Menez, and A. V. Tishchenko, “Modal method in deep metal-dielectric gratings: the decisive role of hidden modes,” J. Opt. Soc. Am. A 23, 2501–2509 (2006). [CrossRef]
  7. S. Campbell, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, “Modal method for classical diffraction by slanted lamellar gratings,” J. Opt. Soc. Am. A 25, 2415–2426 (2008). [CrossRef]
  8. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  9. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  10. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876(1996). [CrossRef]
  11. N. M. Lyndin, O. Parriaux, and A. V. Tishchenko, “Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings,” J. Opt. Soc. Am. A 24, 3781–3788 (2007). [CrossRef]
  12. I. Gushchin and A. V. Tishchenko, “Fourier modal method for relief gratings with oblique boundary conditions,” J. Opt. Soc. Am. A 27, 1575–1583 (2010). [CrossRef]
  13. R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12, 1043–1056 (1995). [CrossRef]
  14. P. Lalanne and J. P. Hugonin, “Numerical performance of finite-difference modal methods for the electromagnetic analysis of one-dimensional lamellar gratings,” J. Opt. Soc. Am. A 17, 1033–1042 (2000). [CrossRef]
  15. Y.-P. Chiou, W.-L. Yeh, and N.-Y. Shih, “Analysis of highly conducting lamellar gratings with multidomain pseudospectral method,” J. Lightwave Technol. 27, 5151–5159 (2009). [CrossRef]
  16. G. Granet, L. B. Andriamanampisoa, K. Raniriharinosy, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310 (2010). [CrossRef]
  17. D. Song, L. Yuan, and Y. Y. Lu, “Fourier-matching pseudospectral modal method for diffraction gratings,” J. Opt. Soc. Am. A 28, 613–620 (2011). [CrossRef]
  18. K. Edee, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings,” J. Opt. Soc. Am. A 28, 2006–2013 (2011). [CrossRef]
  19. D. Maystre, “Sur la diffraction et l’absorption par les réseaux utilisés dans l’infrarouge, le visible et l’ultraviolet,” Ph.D. dissertation (Université d’Aix-Marseille III, 1974).
  20. D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), Chap. 3.
  21. A. Pomp, “The integral method for coated gratings—computational cost,” J. Mod. Opt. 38, 109–120 (1991). [CrossRef]
  22. B. H. Kleemann, A. Mitreiter, and F. Wyrowski, “Integral equation method with parametrization of grating profile—theory and experiments,” J. Mod. Opt. 43, 1323–1349 (1996). [CrossRef]
  23. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  24. E. Popov, B. Bozhkov, D. Maystre, and J. Hoose, “Integral method for echelles covered with lossless or absorbing thin dielectric layers,” Appl. Opt. 38, 47–55 (1999). [CrossRef]
  25. T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418 (2005). [CrossRef]
  26. A. Rathsfeld, G. Schmidt, and B. H. Kleemann, “On a fast integral equation method for diffraction gratings,” Commun. Comput. Phys. 1, 984–1009 (2006).
  27. L. I. Goray and G. Schmidt, “Solving conical diffraction with integral equations,” J. Opt. Soc. Am. A 27, 585–597 (2010). [CrossRef]
  28. G. Schmidt and B. H. Kleemann, “Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction,” J. Mod. Opt. 58, 407–423 (2011). [CrossRef]
  29. E. Popov, M. Neviére, B. Gralak, and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33–42 (2002). [CrossRef]
  30. Y. Wu and Y. Y. Lu, “Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method,” J. Opt. Soc. Am. A 26, 2444–2451(2009). [CrossRef]
  31. Y. Wu and Y. Y. Lu, “Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction,” J. Opt. Soc. Am. A 28, 1191–1196 (2011). [CrossRef]
  32. G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: dielectric corners,” J. Lightwave Technol. 20, 1219–1231 (2002). [CrossRef]
  33. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. (Springer-Verlag, 1998).
  34. W. Lu and Y. Y. Lu, “Waveguide mode solver based on Neumann-to-Dirichlet operators and boundary integral equations,” J. Comput. Phys. 231, 1360–1371 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited