OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 741–747

Hankel–Bessel laser beams

Victor V. Kotlyar, Alexey A. Kovalev, and Victor A. Soifer  »View Author Affiliations


JOSA A, Vol. 29, Issue 5, pp. 741-747 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000741


View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytical solution of the scalar Helmholtz equation to describe the propagation of a laser light beam in the positive direction of the optical axis is derived. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer’s differential equation. Relationships for a particular case of such beams—namely, the Hankel–Bessel (HB) beams—are deduced. The focusing of the HB beams is studied.

© 2012 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 26, 2011
Manuscript Accepted: December 19, 2011
Published: April 19, 2012

Citation
Victor V. Kotlyar, Alexey A. Kovalev, and Victor A. Soifer, "Hankel–Bessel laser beams," J. Opt. Soc. Am. A 29, 741-747 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-5-741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1986).
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  3. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  4. M. A. Bandres, J. C. Gutierrez-Vega, and S. Chavez-Cedra, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44–46 (2004). [CrossRef]
  5. V. Kotlyar, R. Skidanov, S. Khonina, and V. Soifer, “Hypergeometric modes,” Opt. Lett. 32, 742–744 (2007). [CrossRef]
  6. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, “Hypergeometric-Gaussian modes,” Opt. Lett. 32, 3053–3055 (2007). [CrossRef]
  7. V. Kotlyar and A. Kovalev, “Family of hypergeometric laser beams,” J. Opt. Soc. Am. A 25, 262–270 (2008). [CrossRef]
  8. M. Bandres and J. Gutiérrez-Vega, “Circular beams,” Opt. Lett. 33, 177–179 (2008). [CrossRef]
  9. V. V. Kotlyar and A. A. Kovalev, “Nonparaxial hypergeometric beams,” J. Opt. A 11, 045711 (2009). [CrossRef]
  10. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series (National Bureau of Standards, 1965).
  11. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Special Functions,Vol. 2 of Integrals and Series (Gordon & Breach Science, 1990).
  12. W. Miller, Symmetry and Separation of Variables (Addison-Wesley, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited