OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 772–781

Solid-immersion imaging interferometric nanoscopy to the limits of available frequency space

Yuliya Kuznetsova, Alexander Neumann, and S. R. J. Brueck  »View Author Affiliations


JOSA A, Vol. 29, Issue 5, pp. 772-781 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000772


View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging interferometric nanoscopy (IIN) is a synthetic aperture approach offering the potential of optical resolution to the linear-system limit of optics (λ/4n). The immersion advantages of IIN can be realized if the object is in close proximity to a solid-immersion medium with illumination and collection through the substrate and coupling this radiation to air by a grating on the medium surface opposite the object. The spatial resolution as a function of the medium thickness and refractive index as well as the field-of-view of the objective optical system is derived and applied to simulations.

© 2012 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(180.0180) Microscopy : Microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 6, 2011
Revised Manuscript: January 24, 2012
Manuscript Accepted: January 25, 2012
Published: April 20, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Yuliya Kuznetsova, Alexander Neumann, and S. R. J. Brueck, "Solid-immersion imaging interferometric nanoscopy to the limits of available frequency space," J. Opt. Soc. Am. A 29, 772-781 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-5-772


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopichen Wahrnehmung,” Arch. Mikrosk. Anat. Entwichlungsmech 9, 413–468 (1873). [CrossRef]
  2. F. Le, M. Gross, and L. Collot, “Synthetic aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550–1552 (2001). [CrossRef]
  3. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002). [CrossRef]
  4. Z. Zalevsky and D. Mendlovic, Optical Super Resolution(Springer, 2002).
  5. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” in Progress in Optics, Vol. 15, E. Wolf, ed. (1999), Chap. 4.
  6. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–501 (1955). [CrossRef]
  7. G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799–804 (1969). [CrossRef]
  8. I. J. Cox and J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152–1158 (1986). [CrossRef]
  9. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932–941 (1967). [CrossRef]
  10. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia, and P. García-Martínez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt. 38, 7245–7251 (1999). [CrossRef]
  11. P. C. Sun and E. N. Leith, “Superresolution by spatial-temporal encoding methods,” Appl. Opt. 31, 4857–4862 (1992). [CrossRef]
  12. M. Françon, “Amélioration de la reśolution ďoptique,” Nuovo Cimento Suppl. 9, 283–287 (1952). [CrossRef]
  13. A. W. Lohmann and D. P. Parish, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037–1043 (1964). [CrossRef]
  14. A. Zlotnik, Z. Zalevsky, and E. Marom, “Superresolution with nonorthogonal polarization coding,” Appl. Opt. 44, 3705–3715 (2005). [CrossRef]
  15. A. I. Kartashev, “Optical system with enhanced resolving power,” Opt. Spectrosc. 9, 204–206 (1960).
  16. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30, 3305–3307 (2005). [CrossRef]
  17. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef]
  18. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Digital Fourier holography enables wide-field, superresolved, microscopic characterization,” Opt. Photon. News 18, 29 (2007). [CrossRef]
  19. S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a systems diffraction limit using optical spectral encoding of the spatial frequency,” J. Opt. A. 10, 025304 (2008). [CrossRef]
  20. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2595 (2004). [CrossRef]
  21. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–826 (2006). [CrossRef]
  22. V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006). [CrossRef]
  23. E. N. Leith, D. Angell, and C.-P. Kuei, “Superresolution by incoherent-to-coherent conversion,” J. Opt. Soc. Am. A 4, 1050–1054 (1987). [CrossRef]
  24. E. N. Leith, “Small-aperture, high-resolution, two-channel imaging system,” Opt. Lett. 15, 885–887 (1990). [CrossRef]
  25. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006). [CrossRef]
  26. C. J. R. Sheppard and Z. Hegedus, “Resolution for off-axis illumination,” J. Opt. Soc. Am. A 15, 622–624 (1998). [CrossRef]
  27. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008). [CrossRef]
  28. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009). [CrossRef]
  29. V. Micó, J. García, and Z. Zalevsky, “Axial superresolution by synthetic aperture generation,” J. Opt. A. 10, 125001 (2008). [CrossRef]
  30. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008). [CrossRef]
  31. S. Tyler, D. L. Ralston, P. Marks, S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007). [CrossRef]
  32. S. Tyler, D. L. Ralston, P. Marks, S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555–2569 (2008). [CrossRef]
  33. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008). [CrossRef]
  34. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002). [CrossRef]
  35. A. Sentenac, P. C. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97, 243901 (2006). [CrossRef]
  36. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009). [CrossRef]
  37. S. W. Hell, “Far-field optical nanoscopy (review),” Science 316, 1153–1158 (2007). [CrossRef]
  38. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef]
  39. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef]
  40. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003). [CrossRef]
  41. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy—approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663 (2007). [CrossRef]
  42. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy,” J. Opt. Soc. Am. A 25, 811–822 (2008). [CrossRef]
  43. A. Neumann, Y. Kusnetsova, and S. R. J. Brueck, “Structured illumination for the extension of imaging interferometric lithography,” Opt. Express 16, 6785–6793 (2008). [CrossRef]
  44. A. Vainrub, O. Pustovyy, and V. Vodyanoy, “Resolution of 90 nm (λ/5) in an optical transmission microscope with annular condenser,” Opt. Lett. 31, 2855–2857 (2006). [CrossRef]
  45. F. H. Koklu, S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34, 1261–1263 (2009). [CrossRef]
  46. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination,” Opt. Express 16, 20477–20485 (2008). [CrossRef]
  47. A. Vainrub, O. Pustovyy, and V. Vodyanoy, “Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser,” Opt. Lett. 31, 2855–2857 (2006). [CrossRef]
  48. F. H. Koklu, S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34, 1261–1263 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited