OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 797–807

Real-time defect detection of steel wire rods using wavelet filters optimized by univariate dynamic encoding algorithm for searches

Jong Pil Yun, Yong-Ju Jeon, Doo-chul Choi, and Sang Woo Kim  »View Author Affiliations


JOSA A, Vol. 29, Issue 5, pp. 797-807 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000797


View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new defect detection algorithm for scale-covered steel wire rods. The algorithm incorporates an adaptive wavelet filter that is designed on the basis of lattice parameterization of orthogonal wavelet bases. This approach offers the opportunity to design orthogonal wavelet filters via optimization methods. To improve the performance and the flexibility of wavelet design, we propose the use of the undecimated discrete wavelet transform, and separate design of column and row wavelet filters but with a common cost function. The coefficients of the wavelet filters are optimized by the so-called univariate dynamic encoding algorithm for searches (uDEAS), which searches the minimum value of a cost function designed to maximize the energy difference between defects and background noise. Moreover, for improved detection accuracy, we propose an enhanced double-threshold method. Experimental results for steel wire rod surface images obtained from actual steel production lines show that the proposed algorithm is effective.

© 2012 Optical Society of America

OCIS Codes
(150.3040) Machine vision : Industrial inspection
(150.1135) Machine vision : Algorithms

ToC Category:
Machine Vision

History
Original Manuscript: December 6, 2011
Revised Manuscript: February 7, 2012
Manuscript Accepted: February 14, 2012
Published: April 26, 2012

Citation
Jong Pil Yun, Yong-Ju Jeon, Doo-chul Choi, and Sang Woo Kim, "Real-time defect detection of steel wire rods using wavelet filters optimized by univariate dynamic encoding algorithm for searches," J. Opt. Soc. Am. A 29, 797-807 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-5-797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Cho, B. M. Chung, and M. J. Park, “Development of real-time vision-based fabric inspection system,” IEEE Trans. Ind. Electron. 52, 1073–1079 (2005). [CrossRef]
  2. M. Rallo, M. S. Millan, and J. Escofet, “Unsupervised novelty detection using Gabor filters for defect segmentation in textures,” J. Opt. Soc. Am. A 26, 1967–1976 (2009). [CrossRef]
  3. S. C. Kim and T. J. Kang, “Automated defect detection system using wavelet packet frame and Gaussian mixture model,” J. Opt. Soc. Am. A 23, 2690–2691 (2006). [CrossRef]
  4. A. Kumar, “Neural network based detection of local textile defects,” Pattern Recogn. 36, 1645–1659 (2003). [CrossRef]
  5. J. H. Oh, B. J. Yun, S. Y. Kim, and K. H. Park, “A development of the TFT-LCD image defect inspection method based on human visual system,” IEICE Trans. Fundamentals E91-A, 1400–1407 (2008). [CrossRef]
  6. T. H. Kim, T. H. Cho, Y. H. Moon, and S. H. Park, “Visual inspection system for the classification of solder joints,” Pattern Recogn. 32565–575 (1999). [CrossRef]
  7. Z. Wen and Y. Tao, “Brightness-invariant image segmentation for on-line fruit defect detection,” Opt. Eng. 37, 2948–2952 (1998). [CrossRef]
  8. V. H. C. D. Albuquerque, C. C. Silva, T. I. D. S. Menezes, J. P. Farias, and J. M. R. S. Tavares, “Automatic evaluatin of nickel alloy secondary phases from SEM images,” Microsc. Res. Tech. 74, 36–46 (2011). [CrossRef]
  9. P. P. R. Filho, T. D. S. Cavalcante, V. H. C. D. Albuquerque, and J. M. R. S. Tavares, “Brinell and Vickers hardness measurement using image processing and analysis techniques,” J. Test. Eval. 38, 88–94 (2010).
  10. L. M. Sanchez-Brea, P. Siegmann, M. A. Rebollo, and E. Bernabeu, “Optical technique for the automatic detection and measurement of surface defects on thin metallic wires,” Appl. Opt. 39, 539–545 (2000). [CrossRef]
  11. V. H. C. D. Albuquerque, J. M. R. S. Tavares, and L. M. P. Dur, “Evaluation of delamination damage on composite plates using an artificial neural network for the radiographic image analysis,” J. Compos. Mater. 44, 1139–1159 (2010). [CrossRef]
  12. X. Peng, T. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39, 1180–1189 (2008).
  13. J. P. Yun, S. H. Choi, and S. W. Kim, “Vision-based defect detection of scale-covered steel billet surfaces,” Opt. Eng. 48, 037205 (2009). [CrossRef]
  14. J. Ge, Z. Zhu, D. He, and L. Chen, “A vision-based algorithm for seam detection in a PAW process for large-diameter stainless steel pipes,” Int. J. Adv. Manuf. Technol. 26, 1006–1011 (2005).
  15. X. Li, S. K. Tso, X. P. Guan, and Q. Huang, “Improving automatic detection of defects in castings by applying wavelet technique,” IEEE Trans. Ind. Electron. 53, 1927–1934 (2006). [CrossRef]
  16. D. C. Choi, Y. J. Jeon, J. P. Yun, and S. W. Kim, “Pinhole detection in steel slab images using Gabor filter and morphological features,” Appl. Opt. 50, 5122–5129 (2011). [CrossRef]
  17. F. Pernkopf, “Detection of surface defects on raw steel blocks using Bayesian network classifiers,” Pattern Anal. Applic. 7, 333–342 (2004).
  18. H. Jia, Y. L. Murphey, J. Shi, and T. S. Chang, “An intelligent real-time vision system for surface defect detection,” in Proceedings of the IEEE International Conference on Pattern Recognition, Vol. 3 (2004), pp. 239–242.
  19. Alaknanda, R. S. Anand, and P. Kumar, “Flaw detection in radiographic weld images using morphological approach,” NDT and E Int. 39, 29–33 (2006).
  20. J. W. Kim and S. W. Kim, “A fast computational optimization method: univariate dynamic encoding algorithm for searches (uDEAS),” IEICE Trans. Fundamentals E-90A, 1679–1689 (2007). [CrossRef]
  21. Y. J. Jang and S. W. Kim, “An estimation of a billet temperature during reheating furnace operation,” Int. J. Control Autom. Syst. 5, 43–60 (2007).
  22. J. W. Kim, T. Kim, Y. Park, and S. W. Kim, “On load motor parameter identification using dynamic encoding algorithm for searches (uDEAS),” IEEE Trans. Energy Conv. 23, 804–813 (2008). [CrossRef]
  23. E. Kim, M. S. Kim, J. Y. Choi, S. W. Kim, and J. W. Kim, “Trajectory generation schemes for bipedal ascending and descending stairs using univariate dynamic encoding algorithm for searches (uDEAS),“ Int. J. Control Autom. Syst. 8, 1061–1071 (2010).
  24. J. L. Sobral, “Optimized filters for texture defect detection,” in IEEE International Conference on Image Processing 2005 (IEEE, 2005), pp. 565–568.
  25. H. Sari-Sarraf and J. S. Goddard, “Vision system for on-loom fabric inspection,” IEEE Trans. Industrial Appl. 35, 1252–1259 (1999).
  26. Y. Han and P. Shi, “An adaptive level-selecting wavelet transform for texture defect detection,” Image Vision Comput. 25, 1239–1248 (2007). [CrossRef]
  27. X. Z. Yang, G. K. H. Pang, and N. H. C. Yung, “Discriminative fabric defect detection using adaptive wavelets,” Opt. Eng. 41, 3116–3126 (2002). [CrossRef]
  28. W. J. Jasper, J. Joines, and J. Brenzovich, “Fabric defect detection using genetic algorithm tuned wavelet filter,” J. Text. Inst. 96, 43–54 (2005). [CrossRef]
  29. W. J. Jasper, S. J. Garnier, and H. Potlapalli, “Texture characterization and defect detection using adaptive wavelets,” Opt. Eng. 35, 3140–3149 (1996). [CrossRef]
  30. X. Z. Yang, G. K. H. Pang, and N. H. C. Yung,” Robust fabric defect detection and classification using multiple adaptive wavelets,” IEE Proc. Vis. Image Signal Process. 152, 715–723 (2005).
  31. P. Rieder, J. Gotze, and J. A. Nossek, “Parameterization of orthogonal wavelet transform and their implementation,” IEEE. Trans. Circuits Syst. II 45, 217–226 (1998) .
  32. G. Strang and T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, 1996).
  33. I. W. Selesnick, “Maple and the parameterization of orthogonal wavelet bases,” http://taco.poly.edu/selesi/theta2h (1997).
  34. P. P. Vaidyanathan, Multirate Systems and Filter Banks(Prentice Hall, 1993).
  35. B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, “Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis,” IEEE Trans. Geosci. Remote Sens. 40, 2300–2312 (2002). [CrossRef]
  36. G. P. Nason and W. Silverman, “The stationary wavelet transform and some statistical application,” in Wavelets and Statistics, A. Antoniadis and G. Oppenheim, eds. (Springer-Verlag, 1995), pp. 281–299.
  37. W. Liu and Y. Zhao, “Image fusion based on PCA and undecimated discrete wavelet transform,” in Lecture Notes in Computer Science, 2006 (LNCS)4233, (Springer-Verlag, 2006), pp. 481–488. [CrossRef]
  38. J. W. Kim and S. W. Kim, “Numerical method for global optimisation: dynamic encoding algorithm for searches,” IEE Proc. Control Theory Applic. 151, 661–668 (2004).
  39. A. Kumar and G. K. H. Pang, “Defect detection in textured materials using Gabor filters,” IEEE Trans. Ind. Appl. 38, 425–440 (2002). [CrossRef]
  40. J. P. Yun, S. H. Choi, B. Y. Seo, and S. W. Kim, “Real-time vision-based defect inspection for high-speed steel products,” Opt. Eng. 47, 077204 (2008). [CrossRef]
  41. J. S. Goodchild and F. Fueten, “Edge detection in petrographic images using the rotating polarizer stage,” Comput. Geosci. 24, 745–751 (1998). [CrossRef]
  42. K. L. Mak, P. Peng, and H. T. K. Lau, “Optimal morphological filter design for fabric defect detection,” in Proceedings of IEEE International Conference on Industrial Technology (2005), pp. 799–804.
  43. X. Li, S. K. Tso, X. P. Guan, and Q. Huang, “Improving automatic detection of defects in castings by applying wavelet technique,” IEEE Trans. Ind. Electron. 53, 1927–1934 (2006). [CrossRef]
  44. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing (California Technical, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited