OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 808–816

Highly compact imaging using Bessel beams generated by ultraminiaturized multi-micro-axicon systems

Niklas Weber, Dominik Spether, Andreas Seifert, and Hans Zappe  »View Author Affiliations


JOSA A, Vol. 29, Issue 5, pp. 808-816 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000808


View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Employing Bessel beams in imaging takes advantage of their self-reconstructing properties to achieve small focal points while maintaining a large depth of focus. Bessel beams are efficiently generated using axicons, and their utility in scanning imaging systems, such as optical coherence tomography (OCT), has been demonstrated. As these systems are miniaturized to allow, for example, endoscopic implementations, micro-axicons are required to assure the maintenance of a large depth of focus. We demonstrate here the design, fabrication, and application of molded micro-axicons for use in silicon-based micro-optical benches. It is shown that arrangements of multiple convex and concave axicons may be implemented to optimize the depth of focus in a miniaturized OCT system, using a telescopic optical arrangement of considerably shorter optical system length than that achievable with classical micro-optics.

© 2012 Optical Society of America

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(080.4225) Geometric optics : Nonspherical lens design

ToC Category:
Optical Devices

History
Original Manuscript: January 11, 2012
Revised Manuscript: February 21, 2012
Manuscript Accepted: February 21, 2012
Published: April 27, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Niklas Weber, Dominik Spether, Andreas Seifert, and Hans Zappe, "Highly compact imaging using Bessel beams generated by ultraminiaturized multi-micro-axicon systems," J. Opt. Soc. Am. A 29, 808-816 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-5-808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  2. R. Herman and T. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc.Am. A 8, 932–942 (1991). [CrossRef]
  3. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  4. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef]
  5. J. A. Kim, K. I. Lee, H. R. Noh, W. Jhe, and M. Ohtsu, “Atom trap in an axicon mirror,” Opt. Lett. 22, 117–119 (1997). [CrossRef]
  6. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  7. S. Klewitz, P. Leiderer, S. Herminghaus, and S. Sogomonian, “Tunable stimulated raman scattering by pumping with Bessel beams,” Opt. Lett. 21, 248–250 (1996). [CrossRef]
  8. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A: Mater. Sci. Process. 84, 423–430 (2006). [CrossRef]
  9. R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996). [CrossRef]
  10. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef]
  11. B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Opt. Lett. 31, 987–989 (2006). [CrossRef]
  12. O. Brzobohatý, T. Čižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008). [CrossRef]
  13. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006). [CrossRef]
  14. P. Dufour, M. Piché, Y. D. Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006). [CrossRef]
  15. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002). [CrossRef]
  16. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006). [CrossRef]
  17. K. Lee and J. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33, 1696–1698 (2008). [CrossRef]
  18. M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009). [CrossRef]
  19. X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260(2010). [CrossRef]
  20. S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010). [CrossRef]
  21. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  22. J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999). [CrossRef]
  23. W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005). [CrossRef]
  24. K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006). [CrossRef]
  25. G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008). [CrossRef]
  26. S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009). [CrossRef]
  27. B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited