OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 817–831

Modal formulation for diffraction by absorbing photonic crystal slabs

Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Björn C. P. Sturmberg, Michael A. Byrne, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations

JOSA A, Vol. 29, Issue 5, pp. 817-831 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semianalytic approach allows efficient and accurate calculation of the absorption of an array with a complex unit cell. This approach gives direct physical insight into the absorption mechanism in such structures, which can be used to enhance the absorption. The verification and validation of this approach is applied to a silicon nanowire array, and the efficiency and accuracy of the method is demonstrated. The method is ideally suited to studying the manner in which spectral properties (e.g., absorption) vary with the thickness of the array, and we demonstrate this with efficient calculations that can identify an optimal geometry.

© 2012 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(290.0290) Scattering : Scattering
(350.6050) Other areas of optics : Solar energy
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Diffraction and Gratings

Original Manuscript: October 20, 2011
Manuscript Accepted: December 13, 2011
Published: April 30, 2012

Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Björn C. P. Sturmberg, Michael A. Byrne, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke, "Modal formulation for diffraction by absorbing photonic crystal slabs," J. Opt. Soc. Am. A 29, 817-831 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  2. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006). [CrossRef]
  3. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666 (2007).
  4. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010). [CrossRef]
  5. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982). [CrossRef]
  6. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003). [CrossRef]
  7. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78, 023825 (2008). [CrossRef]
  8. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007). [CrossRef]
  9. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009).
  10. N. S. Lewis, “Toward cost-effective solar energy use,” Science 315, 798–801 (2007). [CrossRef]
  11. P. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley-VCH, 2009).
  12. J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113 (2009).
  13. R. C. McPhedran, D. H. Dawes, L. C. Botten, and N. A. Nicorovici, “On-axis diffraction by perfectly conducting capacitive grids,” Journal of Electromagnetic Waves and Applications 10, 1085–1111(27) (1996). [CrossRef]
  14. L. C. Botten, R. C. McPhedran, N. A. Nicorovici, and A. B. Movchan, “Off-axis diffraction by perfectly conducting capacitive grids: Modal formulation and verification,” J. Electromagn. Waves Appl. 12, 847–882(36) (1998). [CrossRef]
  15. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill, 1953).
  16. J. Blad and A. S. Sudbø, “Evanescent modes in out-of-plane band structure for two-dimensional photonic crystals,” Opt. Express 17, 7170–7185 (2009). [CrossRef]
  17. D. J. Kan, A. A. Asatryan, C. G. Poulton, and L. C. Botten, “Multipole method for modeling linear defects in photonic woodpiles,” J. Opt. Soc. Am. B 27, 246–258 (2010).
  18. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta. 28, 1087–1102 (1981). [CrossRef]
  19. L. Vardapetyan and L. Demkowicz, “Full-wave analysis of dielectric waveguides at a given frequency,” Math. Comput. 72, 105–129 (electronic) (2003).
  20. K. Dossou and M. Fontaine, “A high order isoparametric finite element method for the computation of waveguide modes,” Comput. Methods Appl. Mech. Eng. 194, 837–858 (2005). [CrossRef]
  21. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide (Society for Industrial and Applied Mathematics (SIAM), 1998).
  22. A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements (Academic, 1998).
  23. D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, and M. Fortin, Mixed Finite Elements, Compatibility Conditions, and Applications (Springer-Verlag, 2008).
  24. G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics : An Introduction (Springer, 2002).
  25. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, A1067–A1081 (2011). [CrossRef]
  26. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3, 189–192 (1995). [CrossRef]
  27. J. Meixner, “The behavior of electromagnetic fields at edges,” IEEE Trans. Antennas Propag. 20, 442–446 (1972). [CrossRef]
  28. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  29. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
  30. R. Asadi, M. Malek-Mohammad, and S. Khorasani, “All optical switch based on Fano resonance in metal nanocomposite photonic crystals,” Opt. Commun. 284, 2230–2235 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited