OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1035–1046

The point-characteristic function, wavefronts, and caustic of a spherical wave refracted by an arbitrary smooth surface

Magdalena Marciano-Melchor, Esperanza Navarro-Morales, Edwin Román-Hernández, José Guadalupe Santiago-Santiago, Gilberto Silva-Ortigoza, Ramón Silva-Ortigoza, and Román Suárez-Xique  »View Author Affiliations


JOSA A, Vol. 29, Issue 6, pp. 1035-1046 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001035


View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of this paper is to obtain expressions for the k-function, the wavefront train, and the caustic associated with the light rays refracted by an arbitrary smooth surface after being emitted by a point light source located at an arbitrary position in a three-dimensional homogeneous optical medium. The general results are applied to a parabolic refracting surface. For this case, we find that when the point light source is off the optical axis, the caustic locally has singularities of the hyperbolic umbilic type, while the refracted wavefront, at the caustic region, locally has singularities of the cusp ridge and swallowtail types.

© 2012 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.2720) Geometric optics : Mathematical methods (general)
(080.2740) Geometric optics : Geometric optical design
(120.5710) Instrumentation, measurement, and metrology : Refraction

History
Original Manuscript: December 13, 2011
Revised Manuscript: March 1, 2012
Manuscript Accepted: March 1, 2012
Published: May 29, 2012

Citation
Magdalena Marciano-Melchor, Esperanza Navarro-Morales, Edwin Román-Hernández, José Guadalupe Santiago-Santiago, Gilberto Silva-Ortigoza, Ramón Silva-Ortigoza, and Román Suárez-Xique, "The point-characteristic function, wavefronts, and caustic of a spherical wave refracted by an arbitrary smooth surface," J. Opt. Soc. Am. A 29, 1035-1046 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-6-1035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. N. Stavroudis, The Optics of Rays, Wavefronts and Caustics (Academic, 1972).
  2. O. N. Stavroudis and R. C. Fronczek, “Caustic surfaces and the structure of the geometrical image,” J. Opt. Soc. Am. 66, 795–800 (1976). [CrossRef]
  3. O. N. Stavroudis, R. C. Fronczek, and R. S. Chang, “Geometry of the half-symmetric image,” J. Opt. Soc. Am. 68, 739–742 (1978). [CrossRef]
  4. O. N. Stavroudis, The Mathematics of Geometrical and Physical Optics (Wiley-VCH Verlag, 2006).
  5. O. N. Stavroudis, “The k function in geometrical optics and its relationship to the archetypal wave front and the caustic surface,” J. Opt. Soc. Am. A 12, 1010–1016 (1995). [CrossRef]
  6. O. N. Stavroudis, “Refraction of the k-function at spherical surfaces,” J. Opt. Soc. Am. A 12, 1805–1811 (1995). [CrossRef]
  7. D. L. Shealy and J. A. Hoffnagle, “Wavefront and caustics of a plane wave refracted by an arbitrary surface,” J. Opt. Soc. Am. A 25, 2370–2382 (2008). [CrossRef]
  8. E. Romań-Hernández, J. G. Santiago-Santiago, G. Silva-Ortigoza, and R. Silva-Ortigoza, “Wavefronts and caustic of a spherical wave reflected by an arbitrary smooth surface,” J. Opt. Soc. Am. A 26, 2295–2305 (2009). [CrossRef]
  9. E. Romań-Hernández, J. G. Santiago-Santiago, G. Silva-Ortigoza, and R. Silva-Ortigoza, “Wavefronts and caustic of a circular wave reflected by an arbitrary smooth curve,” J. Opt. 12, 055705 (2011).
  10. J. B. Scarborough, “The caustic curve of an off-axis parabola,” Appl. Opt. 3, 1445–1445 (1964). [CrossRef]
  11. Stalzer and J. Henry, “Comment on the caustic curve of a parabola,” Appl. Opt. 4, 1205–1206 (1965). [CrossRef]
  12. I. Lazar and L. A. DeAcetis, “Rays from a parabolic reflector for an off focal-points source,” Am. J. Phys. 36, 139–141 (1968). [CrossRef]
  13. R. B. Harris, “Rays from a parabolic reflector for an off focal-point source,” Am. J. Phys. 36, 1022–1023 (1968). [CrossRef]
  14. L. A. DeAcetis, “Wavefronts from a parabolic reflector for an off-focal source and comment on the off-axis caustic,” Am. J. Phys. 36, 909–909 (1968). [CrossRef]
  15. D. L. Shealy and D. G. Burkhard, “Flux density ray propagation in discrete index media expressed in terms of the intrinsic geometry of the reflecting surface,” Opt. Acta 20, 287–301 (1973). [CrossRef]
  16. D. L. Shealy and D. G. Burkhard, “Caustic surfaces and irradiance for reflection and refraction from an ellipsoid, elliptic paraboloid, and elliptic cone,” Appl. Opt. 12, 2955–2959 (1973). [CrossRef]
  17. P. S. Theocaris, “Surface topography by caustics,” Appl. Opt. 15, 1629–1638 (1976). [CrossRef]
  18. D. L. Shealy, “Analytical illuminance and caustic surface calculations in geometrical optics,” Appl. Opt. 15, 2588–2596 (1976). [CrossRef]
  19. P. S. Theocaris, “Properties of caustics from conic reflectors. 1: Meridional rays,” Appl. Opt. 16, 1705–1716 (1977). [CrossRef]
  20. P. S. Theocaris, and E. E. Gdoutos, “Distance measuring based on caustics,” Appl. Opt. 16, 722–728 (1977). [CrossRef]
  21. A. Cornejo, and D. Malacara, “Caustic coordinates in Platzeck–Gaviola test of conic mirrors,” Appl. Opt. 17, 18–19 (1978). [CrossRef]
  22. J. E. Howard, “Imaging properties of off-axis parabolic mirrors,” Appl. Opt. 18, 2714–2722 (1979). [CrossRef]
  23. G. L. Strobel, and D. L. Shealy, “Caustic surface analysis for a gradient-index lens,” J. Opt. Soc. Am. 70, 1264–1269 (1980). [CrossRef]
  24. P. S. Theocaris, and J. G. Michopoulos, “Generalization of the theory of far-field caustics by the catastrophe theory,” Appl. Opt. 21, 1080–1091 (1982). [CrossRef]
  25. D. G. Burkhard, and D. Shealy, “Formula for the density of tangent rays over a caustic surface,” Appl. Opt. 21, 3299–3306 (1982). [CrossRef]
  26. P. S. Theocaris and T. P. Philippidis, “Possibilities of reflected caustics due to an improved optical arrangement: some further aspects,” Appl. Opt. 23, 3667–3675 (1984). [CrossRef]
  27. M. V. Berry, “Disruption of images: the caustic-touching theorem,”J. Opt. Soc. Am. A 4, 561–569 (1987). [CrossRef]
  28. A. M. Kassim and D. L. Shealy, “Wave front equation, caustics, and wave aberration function of simple lenses and mirrors,” Appl. Opt. 27, 516–522 (1988). [CrossRef]
  29. P. S. Theocaris, “Multicusp caustics formed from reflections of warped surfaces,” Appl. Opt. 27, 780–789 (1988). [CrossRef]
  30. A. M. Kassim, D. L. Shealy, and D. G. Burkhard, “Caustic merit function for optical design,” Appl. Opt. 28, 601–606 (1989). [CrossRef]
  31. I. H. Al-Ahdali and D. L. Shealy, “Optimization of three- and four-element lens systems by minimizing the caustic surfaces,” Appl. Opt. 29, 4551–4559 (1990). [CrossRef]
  32. D. R. J. Chillingworth, G. R. Danesh-Naroule, and B. S. Westcott, “On ray-tracing via caustic geometry,” IEEE Trans. Antennas Propag. 38, 625–632 (1990). [CrossRef]
  33. M. R. Hatch and D. E. Stoltzmann, “Extending the caustic test to general aspheric surfaces,” Appl. Opt. 31, 4343–4349 (1992). [CrossRef]
  34. D. P. K. Banerjee, R. V. Willstrop, and B. G. Anandarao, “Improving the accuracy of the caustic test,” Appl. Opt. 37, 1227–1230 (1998). [CrossRef]
  35. G. Silva-Ortigoza, J. Castro-Ramos, and A. Cordero-Dávila, “Exact calculation of the circle of least confusion of a rotationally symmetric mirror. II,” Appl. Opt. 40, 1021–1028 (2001). [CrossRef]
  36. G. Silva-Ortigoza, M. Marciano-Melchor, O. Carvente-Muñoz, and Ramón Silva-Ortigoza, “Exact computation of the caustic associated with the evolution of an aberrated wavefront,” J. Opt. A 4, 358–365 (2002). [CrossRef]
  37. P. Arguijo and M. Strojnik Scholl, “Exact ray-trace beam for an off-axis paraboloid surface,” Appl. Opt. 42, 3284–3289 (2003). [CrossRef]
  38. J. Castro-Ramos, O. de Ita Prieto, and G. Silva-Ortigoza, “Computation of the disk of least confusion for conic mirrors,” Appl. Opt. 43, 6080–6089 (2004). [CrossRef]
  39. P. Su, J. Hudman, J. Sasian, and W. Dallas, “Dual beam generation at a ray caustic by a multiplexing computer-generated hologram,” Opt. Express 13, 4843–4847 (2005). [CrossRef]
  40. M. Avendaño-Alejo and R. Díaz-Uribe, “Testing a fast off-axis parabolic mirror by using tilted null screens,” Appl. Opt. 45, 2607–2614 (2006). [CrossRef]
  41. G. Essl, “Computation of wave fronts on a disk I: numerical experiments,” Electr. Notes Theor. Comput. Sci. 161, 25–41 (2006).
  42. M. Avendaño-Alejo, R. Díaz-Uribe, and I. Moreno, “Caustics caused by refraction in the interface between an isotropic medium and a uniaxial crystal,” J. Opt. Soc. Am. A 25, 1586–1593 (2008). [CrossRef]
  43. E. Román-Hernández and G. Silva-Ortigoza, “Exact computation of image disruption under reflection on a smooth surface and Ronchigrams,” Appl. Opt. 47, 5500–5518 (2008). [CrossRef]
  44. M. Faryad, “High frequency expressions for the field in the caustic region of a cylindrical reflector placed in chiral medium,” Prog. Electromagn. Res. 76, 153–182 (2007). [CrossRef]
  45. M. Avendaño-Alejo, V. I. Moreno-Oliva, M. Campos-García, and R. Díaz-Uribe, “Quantitative evaluation of an off-axis parabolic mirror by using a tilted null screen,” Appl. Opt. 48, 1008–1015 (2009). [CrossRef]
  46. E. Román-Hernández, J. G. Santiago-Santiago, G. Silva-Ortigoza, R. Silva-Ortigoza, and J. Velázquez-Castro, “Describing the structure of ronchigrams when the grating is placed at the caustic region: the parabolical mirror,” J. Opt. Soc. Am. A 27, 832–845 (2010). [CrossRef]
  47. M. Avendaño-Alejo, L. Castañeda, and I. Moreno, “Properties of caustics produced by a positive lens: meridional rays,” J. Opt. Soc. Am. A 27, 2252–2260 (2010). [CrossRef]
  48. M. Avendañ-Alejo, D. González-Utrera, and L. Castañeda, “Caustics in a meridional plane produced by plano-convex conic lenses,” J. Opt. Soc. Am. A 28, 2619–2628 (2011). [CrossRef]
  49. V. Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437 (1964). [CrossRef]
  50. J. W. Bruce and P. J. Giblin, Curves and Singularities, 2nd ed. (Cambridge University, 1992).
  51. V. I. Arnold, Catastrophe Theory (Springer-Verlag, 1986).
  52. V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable MapsI (Birkhäuser, 1995).
  53. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1980).
  54. J. A. Hoffnagle and D. L. Shealy, “Stavroudis’s solution to the eikonal equation for multielement optical systems,” J. Opt. Soc. Am. A 28, 1312–1321 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited