OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1059–1070

Resolution of aplanatic solid immersion lens based microscopy

Rui Chen, Krishna Agarwal, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen  »View Author Affiliations

JOSA A, Vol. 29, Issue 6, pp. 1059-1070 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1561 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the resolution of a subsurface microscopy system based on the use of an aplanatic solid immersion lens. Resolution limits under various criteria are calculated theoretically as well as numerically. Images of combinations of dipoles of various orientations are considered. Both lateral and longitudinal resolutions are studied. The theoretical criteria are compared against the visually resolvable simulated images of the dipoles. The observations are explained explicitly through a detailed analysis of the dyadic Green’s function. A new resolution criterion is also proposed, which provides a very accurate estimate of the resolution limits.

© 2012 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(260.2110) Physical optics : Electromagnetic optics
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: January 23, 2012
Revised Manuscript: February 28, 2012
Manuscript Accepted: February 28, 2012
Published: May 30, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Rui Chen, Krishna Agarwal, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen, "Resolution of aplanatic solid immersion lens based microscopy," J. Opt. Soc. Am. A 29, 1059-1070 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990). [CrossRef]
  2. A. N. Vamivakas, R. D. Younger, B. B. Goldberg, A. K. Swan, M. S. Ünlü, E. R. Behringer, and S. B. Ippolito, “A case study for optics: the solid immersion microscope,” Am. J. Phys. 76, 758–768 (2008). [CrossRef]
  3. S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80, 013703 (2009). [CrossRef]
  4. Y. J. Zhang, “Design of high-performance supersphere solid immersion lenses,” Appl. Opt. 45, 4540–4546 (2006). [CrossRef]
  5. D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35, 2007–2009 (2010). [CrossRef]
  6. S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun. 282, 1036–1041 (2009). [CrossRef]
  7. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001). [CrossRef]
  8. Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000). [CrossRef]
  9. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191, 161–172 (2001). [CrossRef]
  10. K. A. Serrels, E. Ramsay, and D. T. Reid, “70 nm resolution in subsurface optical imaging of silicon integrated-circuits using pupil-function engineering,” Appl. Phys. Lett. 94073113 (2009). [CrossRef]
  11. F. H. Köklü, and M. S. Ünlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett. 35, 184–186 (2010) [CrossRef]
  12. K. M. Lim, G. C. F. Lee, C. J. R. Sheppard, J. C. H. Phang, C. L. Wong, and X. Chen, “Effect of polarization on a solid immersion lens of arbitrary thickness,” J. Opt. Soc. Am. A 28, 903–911 (2011). [CrossRef]
  13. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution solid immersion fluorescence microscopy applying an aplanatic solid immersion lens,” Appl. Opt. 49, 6160–6169 (2010). [CrossRef]
  14. L. Hu, R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. Chen, “Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy,” Opt. Express 19, 19280–19295 (2011). [CrossRef]
  15. C. J. R. Sheppard, T. J. Connolly, J. Lee, and C. J. Cogswell, “Confocal imaging of a stratified medium,” Appl. Opt. 33, 631–640 (1994). [CrossRef]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  17. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
  18. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008). [CrossRef]
  19. V. P. Nayyar and N. K. Verma, “Two-point resolution of Gaussian aperture operating in partially coherent-light using various resolution criteria,” Appl. Opt. 17, 2176–2180 (1978). [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2001).
  21. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (699 KB)     
» Media 2: MOV (696 KB)     
» Media 3: MOV (705 KB)     
» Media 4: MOV (621 KB)     
» Media 5: MOV (649 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited