OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1078–1090

Scattering-induced changes in the degree of polarization of a stochastic electromagnetic plane-wave pulse

Chaoliang Ding, Yangjian Cai, Yongtao Zhang, and Liuzhan Pan  »View Author Affiliations


JOSA A, Vol. 29, Issue 6, pp. 1078-1090 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001078


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T0, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.

© 2012 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.5430) Physical optics : Polarization
(290.0290) Scattering : Scattering

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 17, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 14, 2012
Published: May 30, 2012

Citation
Chaoliang Ding, Yangjian Cai, Yongtao Zhang, and Liuzhan Pan, "Scattering-induced changes in the degree of polarization of a stochastic electromagnetic plane-wave pulse," J. Opt. Soc. Am. A 29, 1078-1090 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-6-1078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic, 2007).
  2. P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204, 53–58 (2002). [CrossRef]
  3. Q. Lin, L. G. Wang, and S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219, 65–70 (2003). [CrossRef]
  4. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, “Spectral coherence properties of temporally modulated stationary light sources,” Opt. Express 11, 1894–1899 (2003). [CrossRef]
  5. V. Torres-Company, G. Mínguez-Vega, J. Lancis, and A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32, 1608–1610 (2007). [CrossRef]
  6. H. Lajunen, J. Tervo, and P. Vahimaa, “Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses,” J. Opt. Soc. Am. A 21, 2117–2123 (2004). [CrossRef]
  7. H. Lajunen, P. Vahimaa, and J. Tervo, “Theory of spatially and spectrally partially coherent pulses,” J. Opt. Soc. Am. A 22, 1536–1545 (2005). [CrossRef]
  8. J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30, 2973–2975 (2005). [CrossRef]
  9. L. G. Wang, Q. Lin, H. Chen, and S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E 67, 056613 (2003). [CrossRef]
  10. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andrès, “Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media,” Opt. Express 18, 14979–14991 (2010). [CrossRef]
  11. V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008). [CrossRef]
  12. C. L. Ding, B. D. Lü, and L. Z. Pan, “Phase singularities and spectral changes of spectrally partially coherent higher-order Bessel-Gauss pulsed beams,” J. Opt. Soc. Am. A 26, 2654–2661 (2009). [CrossRef]
  13. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light1st ed. (Cambridge University, 2007).
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  15. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994). [CrossRef]
  16. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241–243 (1998). [CrossRef]
  17. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. Pure Appl. Opt. 3, 1–9 (2001). [CrossRef]
  18. E. Wolf, “Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation,” Opt. Lett. 28, 1078–1080 (2003). [CrossRef]
  19. H. Roychowdhury, G. P. Agrawal, and E. Wolf, “Changes in the spectrum, in the spectral degree of polarization, and in the spectral degree of coherence of a partially coherent beam propagating through a gradient-index fiber,” J. Opt. Soc. Am. A 23, 940–948 (2006). [CrossRef]
  20. O. Korotkova and G. Gbur, “Angular spectrum representation for propagation of random electromagnetic beams in a turbulent atmosphere,” J. Opt. Soc. Am. A 24, 2728–2736 (2007). [CrossRef]
  21. X. Y. Du and D. M. Zhao, “Changes in the polarization and coherence of a random electromagnetic beam propagating through a misaligned optical system,” J. Opt. Soc. Am. A 25, 773–779 (2008). [CrossRef]
  22. M. Yao, Y. J. Cai, H. T. Eyyuboglu, Y. Baykal, and O. Korotkova, “Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett. 33, 2266–2268 (2008). [CrossRef]
  23. A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009). [CrossRef]
  24. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208, 9–16 (2002). [CrossRef]
  25. T. Shirai, O. Korotkova, and E. Wolf, “A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. Pure Appl. Opt. 7, 232–237 (2005). [CrossRef]
  26. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, “Effects of coherence on the degree of polarization in a Young interference pattern,” Opt. Lett. 31, 688–690 (2006). [CrossRef]
  27. B. Kanseri, S. Rath, and H. C. Kandpal, “Direct determination of the generalized Stokes parameters from the usual Stokes parameters,” Opt. Lett. 34, 719–721 (2009). [CrossRef]
  28. B. Kanseri, S. Rath, and H. C. Kandpal, “Determination of thebeam coherence-polarization matrix of a random electromagnetic beam,” IEEE J. Quantum Electron. 45, 1163–1167 (2009). [CrossRef]
  29. F. Wang, G. F. Wu, X. L. Liu, S. J. Zhu, and Y. J. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett. 36, 2722–2724 (2011). [CrossRef]
  30. L. Z. Pan, Z. G. Zhao, C. L. Ding, and B. D. Lü, “Effect of polarization on spectral switches in the diffraction of stochastic electromagnetic beams,” Appl. Phys. Lett. 95, 181112 (2009). [CrossRef]
  31. L. Z. Pan, M. L. Sun, C. L. Ding, Z. G. Zhao, and B. D. Lü, “Effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic beams passing through an astigmatic optical system,” Opt. Express 17, 7310–7321 (2009). [CrossRef]
  32. W. H. Huang, S. A. Ponomarenko, M. Cada, and G. P. Agrawal, “Polarization changes of partially coherent pulses propagating in optical fibers,” J. Opt. Soc. Am. A 24, 3063–3068(2007). [CrossRef]
  33. C. L. Ding, L. Z. Pan, and B. D. Lü, “Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams,” New J. Phys. 11, 083001 (2009). [CrossRef]
  34. M. Yao, Y. J. Cai, O. Korotkova, Q. Lin, and Z. Y. Wang, “Spatio-temporal coupling of random electromagnetic pulses interacting with reflecting gratings,” Opt. Express 18, 22503–22514(2010). [CrossRef]
  35. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  36. M. Born and E. Wolf, Principles of Optics7th ed. (Cambridge University, 1999).
  37. E. Wolf, J. T. Foley, and F. Gori, “Frequency shifts of spectral lines produced by scattering from spatially random media,” J. Opt. Soc. Am. A 6, 1142–1149 (1989). [CrossRef]
  38. D. G. Fischer and E. Wolf, “Inverse problems with quasi-homogeneous random media,” J. Opt. Soc. Am. A 11, 1128–1135 (1994). [CrossRef]
  39. D. M. Zhao, O. Korotkova, and E. Wolf, “Application of correlation-induced spectral changes to inverse scattering,” Opt. Lett. 32, 3483–3485 (2007). [CrossRef]
  40. Y. Xin, Y. R. Chen, Q. Zhao, and M. C. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007). [CrossRef]
  41. S. Sahin and O. Korotkova, “Scattering of scalar light fields from collections of particles,” Phys. Rev. A 78, 063815(2008). [CrossRef]
  42. M. Lahiri, E. Wolf, D. G. Fischer, and T. Shirai, “Determination of correlation functions of scattering potentials of stochastic media from scattering experiments,” Phys. Rev. Lett. 102, 123901 (2009). [CrossRef]
  43. T. Wang and D. M. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35, 2412–2414 (2010). [CrossRef]
  44. W. R. Gao, “Spectral changes of the light produced by scattering from tissue,” Opt. Lett. 35, 862–864 (2010). [CrossRef]
  45. T. Van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant Intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010). [CrossRef]
  46. Z. S. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82, 033836 (2010). [CrossRef]
  47. H. C. Jacks and O. Korotkova, “Intensity-intensity fluctuations of stochastic fields produced upon weak scattering,” J. Opt. Soc. Am. A 28, 1139–1144 (2011). [CrossRef]
  48. C. L. Ding, Y. J. Cai, O. Korotkova, Y. T. Zhang, and L. Z. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36, 517–519 (2011). [CrossRef]
  49. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley-Interscience, 2000).
  50. O. Korotkova and E. Wolf, “Spectral degree of coherence of a random three-dimensional electromagnetic field,” J. Opt. Soc. Am. A 21, 2382–2385 (2004). [CrossRef]
  51. J. T. Foley and E. Wolf, “Frequency shifts of spectral lines generated by scattering from space-time fluctuations,” Phys. Rev. A 40, 588 (1989). [CrossRef]
  52. O. Korotkova and E. Wolf, “Scattering matrix theory for stochastic scalar fields,” Phys. Rev. E 75, 056609 (2007). [CrossRef]
  53. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  54. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005). [CrossRef]
  55. K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photon. 1, 228–231 (2007). [CrossRef]
  56. T. Setälä, K. Lindfors, and A. T. Friberg, “Degree of polarization in 3D optical fields generated from a partially polarized plane wave,” Opt. Lett. 34, 3394–3396 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited