## Transverse electric and transverse magnetic pulsed-beam decomposition of time-dependent aperture fields |

JOSA A, Vol. 29, Issue 6, pp. 1115-1123 (2012)

http://dx.doi.org/10.1364/JOSAA.29.001115

Enhanced HTML Acrobat PDF (613 KB)

### Abstract

The present contribution is concerned with applying beam-type expansion to a
planar aperture time-dependent (TD) electromagnetic field in which the
propagating elements, the electromagnetic pulsed-beams, are *a
priori* decomposed into transverse electric (TE) and transverse
magnetic (TM) field polarizations. The propagating
field is described as a discrete
superposition of tilted, shifted, and delayed TE and TM electromagnetic
pulsed-beam propagators over the frame spectral lattice. These waveobjects are
evaluated by using TD plane-wave spectral representations. Explicit asymptotic
expressions for electromagnetic isodiffracting pulsed-quadratic beam propagators
are presented, as well as a numerical example.

© 2012 Optical Society of America

**OCIS Codes**

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(080.2720) Geometric optics : Mathematical methods (general)

(260.1960) Physical optics : Diffraction theory

(050.5082) Diffraction and gratings : Phase space in wave options

**ToC Category:**

Propagation

**History**

Original Manuscript: December 16, 2011

Manuscript Accepted: January 23, 2012

Published: June 1, 2012

**Citation**

Timor Melamed, Dor Abuhasira, and David Dayan, "Transverse electric and transverse magnetic pulsed-beam decomposition of time-dependent aperture fields," J. Opt. Soc. Am. A **29**, 1115-1123 (2012)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-6-1115

Sort: Year | Journal | Reset

### References

- B. Steinberg, E. Heyman, and L. Felsen, “Phase space beam summation for time-harmonic radiation from large apertures,” J. Opt. Soc. Am. A 8, 41–59 (1991). [CrossRef]
- J. Arnold, “Rays, beams and diffraction in a discrete phase space: Wilson bases,” Opt. Express 10, 716–727 (2002). [CrossRef]
- A. Shlivinski, E. Heyman, A. Boag, and C. Letrou, “A phase-space beam summation formulation for ultra wideband radiation,” IEEE Trans. Antennas Propag. 52, 2042–2056 (2004). [CrossRef]
- A. Shlivinski, E. Heyman, and A. Boag, “A phase-space beam summation formulation for ultrawide-band radiation—Part II: A multiband scheme,” IEEE Trans. Antennas Propag. 53, 948–957 (2005). [CrossRef]
- M. Katsav and E. Heyman, “Phase space Gaussian beam summation analysis of half plane diffraction,” IEEE Trans. Antennas Propag. 55, 1535–1545 (2007). [CrossRef]
- B. Steinberg, E. Heyman, and L. Felsen, “Phase space beam summation for time dependent radiation from large apertures: continuous parametrization,” J. Opt. Soc. Am. A 8, 943–958 (1991). [CrossRef]
- T. Melamed, “Phase-space beam summation: a local spectrum analysis for time-dependent radiation,” J. Electromagn. Waves Appl. 11, 739–773 (1997). [CrossRef]
- A. Shlivinski, E. Heyman, and A. Boag, “A pulsed beam summation formulation for short pulse radiation based on windowed Radon transform (WRT) frames,” IEEE Trans. Antennas Propag. 53, 3030–3048 (2005). [CrossRef]
- A. Shlivinski and E. Heyman, “Windowed Radon transform frames,” Appl. Comput. Harmon. Anal. 26, 322–343 (2009). [CrossRef]
- Y. Gluk and E. Heyman, “Pulsed beams expansion algorithms for time-dependent point-source radiation. A basic algorithm and a standard-pulsed-beams algorithm,” IEEE Trans. Antennas Propag. 59, 1356–1371 (2011). [CrossRef]
- Y. Hadad and T. Melamed, “Non-orthogonal domain parabolic equation and its Gaussian beam solutions,” IEEE Trans. Antennas Propag. 58, 1164–1172 (2010). [CrossRef]
- Y. Hadad and T. Melamed, “Parameterization of the tilted Gaussian beam waveobjects,” Prog. Electromagn. Res. 102, 65–80 (2010). [CrossRef]
- Y. Hadad and T. Melamed, “Time-dependent tilted pulsed-beams and their properties,” IEEE Trans. Antennas Propag. 59, 3855–3862 (2011). [CrossRef]
- S. Shin and L. Felsen, “Gaussian beams in anisotropic media,” Appl. Phys. 5, 239–250 (1974). [CrossRef]
- R. Simon and N. Mukunda, “Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization,” J. Opt. Soc. Am. A 15, 1361–1370 (1998). [CrossRef]
- I. Tinkelman and T. Melamed, “Gaussian beam propagation in generic anisotropic wavenumber profiles,” Opt. Lett. 28, 1081–1083 (2003). [CrossRef]
- I. Tinkelman and T. Melamed, “Local spectrum analysis of field propagation in anisotropic media. Part I—Time-harmonic fields,” J. Opt. Soc. Am. A 22, 1200–1207 (2005). [CrossRef]
- I. Tinkelman and T. Melamed, “Local spectrum analysis of field propagation in anisotropic media. Part II—Time-dependent fields,” J. Opt. Soc. Am. A 22, 1208–1215 (2005). [CrossRef]
- T. Melamed and L. Felsen, “Pulsed beam propagation in lossless dispersive media. Part I: Theory,” J. Opt. Soc. Am. A 15, 1268–1276 (1998). [CrossRef]
- T. Melamed and L. Felsen, “Pulsed beam propagation in lossless dispersive media. Part II: A numerical example,” J. Opt. Soc. Am. A 15, 1277–1284 (1998). [CrossRef]
- T. Melamed and L. B. Felsen, “Pulsed beam propagation in dispersive media via pulsed plane wave spectral decomposition,” IEEE Trans. Antennas Propag. 48, 901–908 (2000). [CrossRef]
- V. Ĉerveny, M. M. Popov, and I. Pŝenĉik, “Computation of wave fields in inhomogeneous media—Gaussian beam approach,” Geophys. J. Roy. Astron. Soc 70, 109–128 (1982). [CrossRef]
- B. W. A. N. Norris and J. Schrieffer, “Gaussian wave packets in inhomogeneous media with curved interfaces,” Proc. R. Soc. Lond. 412, 93–123 (1987). [CrossRef]
- E. Heyman, “Pulsed beam propagation in an inhomogeneous medium,” IEEE Trans. Antennas Propag. 42, 311–319 (1994). [CrossRef]
- F. Bass and L. Resnick, “Wave beam propagation in layered media,” Prog. Electromagn. Res. 38, 111–123 (2002). [CrossRef]
- T. Melamed, “Phase-space Green’s functions for modeling time-harmonic scattering from smooth inhomogeneous objects,” J. Math. Phys. 45, 2232–2246 (2004). [CrossRef]
- T. Melamed, “Time-domain phase-space Green’s functions for inhomogeneous media,” in Ultrawideband/Short Pulse Electromagnetics 6, E. L. Mokole, M. Kragalott, K. R. Gerlach, M. Kragalott, and K. R. Gerlach, eds. (Springer-Verlag, 2007), pp. 56–63.
- Y. Hadad and T. Melamed, “Tilted Gaussian beam propagation in inhomogeneous media,” J. Opt. Soc. Am. A 27, 1840–1850 (2010). [CrossRef]
- H. Chou, P. Pathak, and R. Burkholder, “Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas,” IEE Proc. Microw. Antennas Propag. 150, 177–183 (2003). [CrossRef]
- H. Chou, P. Pathak, and R. Burkholder, “Novel Gaussian beam method for the rapid analysis of large reflector antennas,” IEEE Trans. Antennas Propag. 49, 880–893 (2001). [CrossRef]
- H.-T. Chou and P. Pathak, “Fast Gaussian beam based synthesis of shaped reflector antennas for contoured beam applications,” IEE Proc. Microw. Antennas Propag. 151, 13–20 (2004). [CrossRef]
- R. Collin, “Scattering of an incident Gaussian beam by a perfectly conducting rough surface,” IEEE Trans. Antennas Propag. 42, 70–74 (1994). [CrossRef]
- O. Kilic and R. Lang, “Scattering of a pulsed beam by a random medium over ground,” J. Electromagn. Waves Appl. 15, 481–516 (2001). [CrossRef]
- G. Gordon, E. Heyman, and R. Mazar, “A phase-space Gaussian beam summation representation of rough surface scattering,” J. Acoust. Soc. Am. 117, 1911–1921 (2005). [CrossRef]
- G. Gordon, E. Heyman, and R. Mazar, “Phase space beam summation analysis of rough surface waveguide,” J. Acoust. Soc. Am. 117, 1922–1932 (2005). [CrossRef]
- T. Melamed, E. Heyman, and L. Felsen, “Local spectral analysis of short-pulse-excited scattering from weakly inhomogenous media: Part I–forward scattering,” IEEE Trans. Antennas Propag. 47, 1208–1217 (1999). [CrossRef]
- T. Melamed, E. Heyman, and L. Felsen, “Local spectral analysis of short-pulse-excited scattering from weakly inhomogeneous media: Part II–inverse scattering,” IEEE Trans. Antennas Propag. 47, 1218–1227 (1999). [CrossRef]
- V. Galdi, H. Feng, D. Castanon, W. Karl, and L. Felsen, “Moderately rough surface underground imaging via short-pulse quasi-ray Gaussian beams,” IEEE Trans. Antennas Propag. 51, 2304–2318 (2003). [CrossRef]
- T. Melamed, “On localization aspects of frequency-domain cattering from low-contrast objects,” IEEE Antennas Wireless Propag. Lett. 2, 40–42 (2003). [CrossRef]
- R. Nowack, S. Dasgupta, G. Schuster, and J.-M. Sheng, “Correlation migration using Gaussian beams of scattered teleseismic body waves,” Bull. Seismol. Soc. Am. 96, 1–10(2006). [CrossRef]
- M. Popov, N. Semtchenok, P. Popov, and A. Verdel, “Depth migration by the Gaussian beam summation method,” Geophysics 75, S81–S93 (2010). [CrossRef]
- N. Bleistein and S. Gray, “Amplitude calculations for 3D Gaussian beam migration using complex-valued traveltimes,” Inverse Probl. 26, 085017 (2010). [CrossRef]
- T. Melamed, “TE and TM beam decomposition of time-harmonic electromagnetic waves,” J. Opt. Soc. Am. A 28, 401–409(2011). [CrossRef]
- E. Heyman and T. Melamed, “Certain considerations in aperture synthesis of ultrawideband/short-pulse radiation,” IEEE Trans. Antennas Propag. 42, 518–525 (1994). [CrossRef]
- T. Melamed, “Exact Gaussian beam expansion of time-harmonic electromagnetic waves,” J. Electromagn. Waves Appl. 23, 975–986 (2009). [CrossRef]
- T. Melamed, “Pulsed beam expansion of electromagnetic aperture fields,” Prog. Electromagn. Res. 114, 317–332(2011). [CrossRef]
- E. Heyman and T. Melamed, Space-Time Representation of Ultra Wideband Signals (Elsevier, 1998), pp. 1–63.
- C. Chapman, “A new method for computing synthetic seismograms,” Geophys. J. Roy. Astron. Soc. 54, 481–518 (1978). [CrossRef]
- R. Martínez-Herrero, P. Mejías, S. Bosch, and A. Carnicer, “Vectorial structure of nonparaxial electromagnetic beams,” J. Opt. Soc. Am. A 18, 1678–1680 (2001). [CrossRef]
- E. Heyman and L. Felsen, “Complex source pulsed beam fields,” J. Opt. Soc. Am. A 6, 806–817 (1989). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.