OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1161–1179

Multiple-scattering model for the coherent reflection and transmission of light from a disordered monolayer of particles

Augusto García-Valenzuela, Edahí Gutiérrez-Reyes, and Rubén G. Barrera  »View Author Affiliations


JOSA A, Vol. 29, Issue 6, pp. 1161-1179 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001161


View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a multiple-scattering formalism, we derive closed-form expressions for the coherent reflection and transmission coefficients of monochromatic electromagnetic plane waves incident upon a two-dimensional array of randomly located spherical particles. The calculation is performed within the quasi-crystalline approximation, and the statistical correlation among the particles is assumed to be given simply by a correlation hole. In the resulting model, the size of the spheres and the angle of incidence are both unrestricted. The final formulas are relatively simple, making the model suitable for a straightforward interpretation of optical-sensing measurements.

© 2012 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: September 15, 2011
Revised Manuscript: January 20, 2012
Manuscript Accepted: January 20, 2012
Published: June 1, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Augusto García-Valenzuela, Edahí Gutiérrez-Reyes, and Rubén G. Barrera, "Multiple-scattering model for the coherent reflection and transmission of light from a disordered monolayer of particles," J. Opt. Soc. Am. A 29, 1161-1179 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-6-1161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000). [CrossRef]
  2. G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114 (2006). [CrossRef]
  3. C. Kuemin, T. Kraus, H. Wolf, and N. D. Spencer, “Matrix effects on the surface plasmon resonance of dry supported gold nanocrystals,” Opt. Lett. 33, 806–808 (2008). [CrossRef]
  4. D.-S. Wang and C.-W. Lin, “Density-dependent optical response of gold nanoparticle monolayers on silicon substrates,” Opt. Lett. 32, 2128–2130 (2007). [CrossRef]
  5. T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am. 68, 1039–1044 (1978). [CrossRef]
  6. A. Bagchi, R. G. Barrera, and A. K. Rajagopal, “Perturbative approach to the calculation of the electric field near a metal surface,” Phys. Rev. B 20, 4824–4838 (1979). [CrossRef]
  7. A Bagchi, R. G. Barrera, and R. Fuchs, “Local-field effect in optical reflectance from adsorbed overlayers,” Phys. Rev. B 25, 7086–7096 (1982). [CrossRef]
  8. V.-V. Truong, G. Bosi, and T. Yamaguchi, “Optical behaviour of granular metal films: single-image versus multiple-image approaches in the treatment of substrate effects,” J. Opt. Soc. Am. A 5, 1379–1381 (1988). [CrossRef]
  9. R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseñor, and W. L. Mochán, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991). [CrossRef]
  10. G. Bosi, “Transmission of a thin film of spherical particles on a dielectric substrate: the concept of effective medium revisited,” J. Opt. Soc. Am. B 9, 208–213 (1992). [CrossRef]
  11. G. Bosi, “Optical response of a thin film of spherical particles on a dielectric substrate: retarded multipolar treatment,” J. Opt. Soc. Am. B 11, 1073–1083 (1994). [CrossRef]
  12. G. Bosi, “Optical response of a thin film of spherical particles upon a dielectric substrate: retarded multipolar treatment including multiple reflections,” J. Opt. Soc. Am. B 13, 1691–1696(1996). [CrossRef]
  13. V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. Pure Appl. Opt. 6, 155–160 (2004). [CrossRef]
  14. J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008). [CrossRef]
  15. M. L. Protopapa, A. Rizzo, M. Re, and L. Pilloni, “Layered silver nanoparticles embedded in a BaF2 matrix: optical characterization,” Appl. Opt. 48, 6662–6669 (2009). [CrossRef]
  16. M. L. Protopapa, “Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. 48, 778–785 (2009). [CrossRef]
  17. T. Menegotto, M. B. Pereira, R. R. B. Correia, and F. Horowitz, “Simple modeling of plasmon resonances in Ag/SiO2 nanocomposite monolayers,” Appl. Opt. 50, C27–C30 (2011). [CrossRef]
  18. R. G. Barrera and A. García-Valenzuela, “Coherent reflectance in a system of random Mie scatterers and its relation to the effective medium approach,” Opt J. Soc. Am. A 20, 296–311 (2003). [CrossRef]
  19. A. García-Valenzuela and R. G. Barrera, “Electromagnetic response of a random half-space of Mie scatterers within the effective field approximation and the determination of the effective optical coefficients,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 627–647 (2003). [CrossRef]
  20. R. G. Barrera, A. Reyes-Coronado, and A. García-Valenzuela, “Nonlocal nature of the electrodynamic response of colloidal systems,” Phys. Rev. B 75, 184202 (2007). [CrossRef]
  21. L. Tsang and J. A. Kong, Scattering of Electromagnetic Waves; Advanced Topics (Wiley, 2001).
  22. E. A. van der Zeeuw, L. M. Sagis, G. J. M. Koper, Mann, M. T. Haarmans, and D. Bedeaux, “The suitability of angle scanning reflectometry for colloidal particle sizing,” J. Chem. Phys. 105, 1646–1653 (1996). [CrossRef]
  23. K. M. Hong, “Multiple scattering of electromagnetic waves by a crowded monolayer of spheres: Application to migration imaging films,” J. Opt. Soc. Am. 70, 821–826 (1980). [CrossRef]
  24. K. M. Hong, “Granularity of monolayers: hard-disk model,” J. Opt. Soc. Am. A 5, 237–240 (1988). [CrossRef]
  25. V. P. Dick, V. A. Loiko, and A. P. Ivanov, “Angular structure of radiation scattered by monolayers of particles: experimental study,” Appl. Opt. 36, 4235–4240 (1997). [CrossRef]
  26. V. A. Loiko, V. P. Dick, and V. I. Molochko, “Monolayers of discrete scatterers: comparison of the single-scattering and quasi-crystalline approximations,” J. Opt. Soc. Am. A 15, 2351–2354 (1998). [CrossRef]
  27. V. A. Loiko, V. P. Dick, and A. P. Ivanov, “Features in coherent transmittance of a monolayer of particles,” J. Opt. Soc. Am. A 17, 2040–2045 (2000). [CrossRef]
  28. V. A. Loiko and A. A. Miskevich, “Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients,” Appl. Opt. 44, 3759–3768 (2005). [CrossRef]
  29. M. C. Peña-Gomar, J. J. F. Castillo, A. García-Valenzuela, R. G. Barrera, and E. Pérez, “Coherent optical reflectance from a monolayer of large particles adsorbed on a glass surface,” Appl. Opt. 45, 626–632 (2006). [CrossRef]
  30. A. Ponyavina, S. Kachan, and N. Sil’vanovich, “Statistical theory of multiple scattering of waves applied to three-dimensional layered photonic crystals,” J. Opt. Soc. Am. 21, 1866–1875 (2004). [CrossRef]
  31. J. J. H. Wang, “A unified and consistent view on the singularities of the electric dyadic Green's’s function in the source region,” IEEE Trans. Antennas Propag. 30, 463–468 (1982). [CrossRef]
  32. M. I. Mishchenko, “Multiple scattering by particles embedded in an absorbing medium. 1. Foldy-Lax equations, order-of-scattering expansion, and coherent field,” Opt. Express 16, 2288–2301 (2008) [CrossRef]
  33. R. G. Barrera and C. I. Mendoza, “Three-particle correlations in the optical properties of granular composites,” Solar Energy Mater. Solar Cells 32, 463–476 (1994). [CrossRef]
  34. J. K. Percus and G. J. Yevick, “Analysis of classical statistical mechanics by means of collective coordinates,” Phys. Rev. 110, 1–13 (1958). [CrossRef]
  35. S. Durant, O. Calvo-Perez, N. Vukadinovic, and J. J. Greffet, “Light scattering by a random distribution of particles in an absorbing media: full-wave Monte Carlo Solutions of the extinction coefficient,” J. Opt. Soc. Am. A 24, 2953–2961 (2007). [CrossRef]
  36. W. C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press Series on Electromagnetic Waves (IEEE, 1995), Chap. 7.
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-Interscience, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited