OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 854–860

Photon-counting three-dimensional integral imaging with compression of elemental images

Chung Ghiu Lee, Inkyu Moon, and Bahram Javidi  »View Author Affiliations

JOSA A, Vol. 29, Issue 6, pp. 854-860 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1092 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present lossless compression of elemental images in photon-counting integral imaging. In order to verify the performance of the compression method applied to low light level three-dimensional (3D) integral imaging, we compute the correlation coefficient and peak to mean square error (PSNR) as metrics for 3D scene reconstruction integrity. We show quantitatively via experiments that a considerable compression of the elemental images in photon-counting integral imaging may be achievable without significant loss in the performance in terms of correlation and PSNR metrics. To the best of our knowledge, this is the first report on applying lossless compression algorithms in photon-counting 3D computational integral imaging.

© 2012 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition

ToC Category:
Image Processing

Original Manuscript: December 6, 2011
Revised Manuscript: February 23, 2012
Manuscript Accepted: March 2, 2012
Published: May 11, 2012

Chung Ghiu Lee, Inkyu Moon, and Bahram Javidi, "Photon-counting three-dimensional integral imaging with compression of elemental images," J. Opt. Soc. Am. A 29, 854-860 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Javidi, F. Okano, and J. Son, Three-Dimensional Imaging, Visualization, and Display Technologies (Springer, 2008).
  2. G. Lippmann, “La photographic intégrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  3. C. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–76 (1968). [CrossRef]
  4. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998). [CrossRef]
  5. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009). [CrossRef]
  6. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006). [CrossRef]
  7. M. Forman, N. Davies, and M. McCormick, “Continuous parallax in discrete pixelated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003). [CrossRef]
  8. Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 171683–1684 (1978). [CrossRef]
  9. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006). [CrossRef]
  10. H. Arimoto and B. Javidi, “Integrate three-dimensional imaging with computed reconstruction,” Opt. Lett. 26, 157–159 (2001). [CrossRef]
  11. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980). [CrossRef]
  12. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001). [CrossRef]
  13. B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008). [CrossRef]
  14. M. Daneshpanah, B. Javidi, and E. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010). [CrossRef]
  15. D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011). [CrossRef]
  16. S. Narravula, M. Hayat, and B. Javidi, “Information theoretic approach for assessing image fidelity in photon-counting arrays,” Opt. Express 18, 2449–2466 (2010). [CrossRef]
  17. I. Moon and B. Javidi, “Three dimensional imaging and recognition using truncated photon counting model and parametric maximum likelihood estimator,” Opt. Express 17, 15709–15715 (2009). [CrossRef]
  18. S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9331 (2005). [CrossRef]
  19. M. Guillaume, P. Melon, P. Réfrégier, and A. Llebaria, “Maximum-likelihood estimation of an astronomical image from a sequence at low photon levels,” J. Opt. Soc. Am. A 15, 2841–2848 (1998). [CrossRef]
  20. L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001). [CrossRef]
  21. A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).
  22. J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004). [CrossRef]
  23. M. Albota, R. Heinrichs, D. Kocher, D. Fouche, B. Player, M. O’Brien, B. Aull, J. Zayhowski, J. Mooney, B. Willard, and R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002). [CrossRef]
  24. P. Hiskett, G. Buller, A. Loudon, J. Smith, I. Gontijo, A. Walker, P. Townsend, and M. Robertson, “Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 um,” Appl. Opt. 39, 6818–6829 (2000). [CrossRef]
  25. P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).
  26. F. Sadjadi, Selected Papers on Automatic Target Recognition (SPIE, 1999).
  27. F. Dubois, “Automatic spatial frequency selection algorithm for pattern recognition by correlation,”Appl. Opt. 32, 4365–4371 (1993). [CrossRef]
  28. A. Nevel and A. Mahalanobis, “Comparative study of maximum average correlation height filter variants using ladar imagery,” Opt. Eng. 42, 541–550 (2003). [CrossRef]
  29. E. Watson and G. Morris, “Imaging thermal objects with photon-counting detectors,” Appl. Opt. 31, 4751–4757 (1992). [CrossRef]
  30. M. Guillaume, T. Amouroux, P. Réfrégier, B. Milliard, and A. Llebaria, “Optimal correlation at low photon levels: study for astronomical images,” Opt. Lett. 22, 322–324 (1997). [CrossRef]
  31. J. W. Goodman, Statistical Optics (Wiley, 1985).
  32. H. Gilbert, Data Compression: Techniques and Applications, Hardware and Software Considerations, 2nd ed. (Wiley, 1987).
  33. K. Sayood, Introduction to Data Compression, 2nd ed. (Morgan Kaufmann, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited