OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 892–900

General state contrast imaging: an optimized polarimetric imaging modality insensitive to spatial intensity fluctuations

Guillaume Anna, Françcois Goudail, and Daniel Dolfi  »View Author Affiliations

JOSA A, Vol. 29, Issue 6, pp. 892-900 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In active polarization imaging, one frequently needs to be insensitive to noninformative spatial intensity fluctuations. We investigate a way of solving this issue with general state contrast (GSC) imaging. It consists in acquiring two scalar polarimetric images with optimized illumination and analysis polarization states, then forming a ratio. We propose a method for maximizing the discrimination ability between a target and a background in GSC images by determining the optimal illumination and analysis states. A further advantage of this approach is to provide an objective way of quantifying the performance improvement obtained by increasing the number of degrees of freedom of a GSC imager. The efficiency of this approach is demonstrated on simulated and real-world images.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

Original Manuscript: December 13, 2011
Revised Manuscript: January 30, 2012
Manuscript Accepted: February 1, 2012
Published: May 17, 2012

Guillaume Anna, Françcois Goudail, and Daniel Dolfi, "General state contrast imaging: an optimized polarimetric imaging modality insensitive to spatial intensity fluctuations," J. Opt. Soc. Am. A 29, 892-900 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Solomon, “Polarization imaging,” Appl. Opt. 20, 1537–1544 (1981). [CrossRef]
  2. R. Walraven, “Polarization imagery,” Opt. Eng. 20, 14–18 (1981).
  3. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optical scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996). [CrossRef]
  4. L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vis. Comput. 15, 81–93 (1997). [CrossRef]
  5. P. J. Wu, J. Joseph, and T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006). [CrossRef]
  6. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef]
  7. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006). [CrossRef]
  8. J. M. Bueno, J. Hunter, C. Cookson, M. Kisilak, and M. Campbell, “Improved scanning laser fundus imaging using polarimetry,” J. Opt. Soc. Am. A 24, 1337–1348 (2007). [CrossRef]
  9. P. Terrier, V. Devlaminck, and J. M. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423–430 (2008). [CrossRef]
  10. A. B. Kostinski and W. M. Boerner, “On the polarimetric contrast optimization,” IEEE Trans. Antennas Propag. 35, 988–991 (1987). [CrossRef]
  11. A. A. Swartz, H. A. Yueh, J. A. Kong, L. M. Novak, and R. T. Shin, “Optimal polarizations for achieving maximal constrast in radar images,” J. Geophys. Res. 93, 15252–15260 (1988). [CrossRef]
  12. B. G. Hoover and J. S. Tyo, “Polarization components analysis for invariant discrimination,” Appl. Opt. 46, 8364–8373 (2007). [CrossRef]
  13. M. Richert, X. Orlik, and A. De Martino, “Adapted polarization state contrast image,” Opt. Express 17, 14199–14210 (2009). [CrossRef]
  14. F. Goudail, “Optimization of the contrast in active Stokes images,” Opt. Lett. 34, 121–123 (2009). [CrossRef]
  15. J. S. Tyo, Z. Wang, S. J. Johnson, and B. Hoover, “Design and optimization of partial Mueller matrix polarizers,” Appl. Opt. 49, 2326–2333 (2010). [CrossRef]
  16. D. Upadhyay, M. Richert, E. Lacot, A. D. Martino, and X. Orlik, “Effect of speckle on APSCI method and Mueller imaging,” Opt. Express 19, 4553–4559 (2011). [CrossRef]
  17. G. Anna, F. Goudail, and D. Dolfi, “Polarimetric target detection in the presence of spatially fluctuating Mueller matrices,” Opt. Lett. 36, 4590–4592 (2011). [CrossRef]
  18. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  19. R. Ossikovski, “Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition,” J. Opt. Soc. Am. A 25, 473–482 (2008). [CrossRef]
  20. F. Goudail and P. Réfrégier, “Statistical techniques for target detection in polarisation diversity images,” Opt. Lett. 26, 644–646 (2001). [CrossRef]
  21. S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806  nm,” Opt. Eng. 39, 2681–2688 (2000). [CrossRef]
  22. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002). [CrossRef]
  23. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Design and experimental validation of a snapshot polarization contrast imager,” Appl. Opt. 48, 5764–5773 (2009). [CrossRef]
  24. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Precision of degree of polarization estimation in the presence of additive Gaussian detector noise,” Opt. Commun. 278, 264–269(2007). [CrossRef]
  25. F. Goudail and A. Bénière, “Optimization of the contrast in polarimetric scalar images,” Opt. Lett. 34, 1471–1473 (2009). [CrossRef]
  26. F. Goudail and J. S. Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” J. Opt. Soc. Am. A 28, 46–53 (2011). [CrossRef]
  27. F. Goudail, “Comparison of the maximal achievable contrast in scalar, Stokes and Mueller images,” Opt. Lett. 35, 2600–2602 (2010). [CrossRef]
  28. H. D. Noble and R. A. Chipman, “Mueller matrix roots algorithm and computational considerations,” Opt. Express 20, 17–31 (2012). [CrossRef]
  29. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08002 (2008). [CrossRef]
  30. F. Goudail, P. Réfrégier, and G. Delyon, “Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images,” J. Opt. Soc. Am. A 21, 1231–1240(2004). [CrossRef]
  31. Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993). [CrossRef]
  32. G. Anna, F. Goudail, and D. Dolfi, “Optimal discrimination of multiple regions with an active polarimetric imager,” Opt. Express 19, 25367–25378 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited