OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 901–907

The behavior of the instantaneous Poynting vector of symmetrical laser beams

Igor A. Litvin  »View Author Affiliations

JOSA A, Vol. 29, Issue 6, pp. 901-907 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we investigate the behavior of the instantaneous Poynting vector of symmetrical paraxial laser beams, namely the modification of the instantaneous Poynting vector and the radiation pattern during propagation in free space for a variety of such beams. As an example, we have investigated in detail the behavior of the instantaneous Poynting vector and the radiation pattern of the paraxial Gaussian and Bessel beams.

© 2012 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 8, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 19, 2012
Published: May 17, 2012

Igor A. Litvin, "The behavior of the instantaneous Poynting vector of symmetrical laser beams," J. Opt. Soc. Am. A 29, 901-907 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1999), Vol.39, pp. 291–372.
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  3. M. J. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995). [CrossRef]
  4. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000). [CrossRef]
  5. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002). [CrossRef]
  6. A. V. Novitsky and D. V. Novitsky, “Nondiffracting electromagnetic fields in inhomogeneous isotropic media,” J. Phys. A: Math. Gen. 39, 5227–5231 (2006). [CrossRef]
  7. H. I. Sztul and R. R. Alfano, “The Poynting vector and angular momentum of Airy beams,” Opt. Express 16, 9411–9416 (2008). [CrossRef]
  8. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  9. M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and the transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  10. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010). [CrossRef]
  11. C. Gao, X. Qi, Y. Liu, J. Xin, and L. Wang, “Sorting and detecting orbital angular momentum states by using a Dove prism embedded Mach–Zehnder interferometer and amplitude gratings,” Opt. Commun. 284, 48–51 (2011). [CrossRef]
  12. G. Zhou, R. Chen, and J. Chen, “Propagation of non-paraxial nonsymmetrical vector Gaussian beam,” Opt. Commun. 259, 32–39 (2006). [CrossRef]
  13. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011). [CrossRef]
  14. A. V. Novitsky and D. V. Novitsky, “Change of the size of vector Bessel beam rings under reflection,” Opt. Commun. 281, 2727–2734 (2008). [CrossRef]
  15. I. A. Litvin, A. Dudley, and A. Forbes, “Poynting vector and orbital angular momentum density of superpositions of Bessel beams,” Opt. Express 19, 16760–16771 (2011). [CrossRef]
  16. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  17. B. Thidé1, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99, 087701(2007). [CrossRef]
  18. I. Mokhun and R. Khrobatin, “Shift of application point of angular momentum in the area of elementary polarization singularity,” J. Opt. A 10, 064015 (2008). [CrossRef]
  19. I. Mokhun, A. Mokhun, Ju. Viktorovskaya, D. Cojoc, O. Angelsky, and E. Di Fabrizio, “Orbital angular momentum of inhomogeneous electromagnetic field produced by polarized optical beams,” Proc. SPIE 5514, 652–662, (2004). [CrossRef]
  20. R. Khrobatin, I. Mokhon, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9, 182–186 (2008). [CrossRef]
  21. I. A. Litvin, M. G. McLarena, and A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282, 1078–1082 (2009). [CrossRef]
  22. G. Rodríguez-Zurita, N. I. Toto-Arellano, M. L. Arroyo-Carrasco, C. Meneses-Fabian, and J. F. Vazquez Castillo, “Experimental observation of spiral patterns by obstruction of Bessel beams: application of single shot phase-shifting interferometry,” in Proceedings of IEEE Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2009), pp. 1–2.
  23. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  24. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited