OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 936–944

Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer

Frédéric Gillard, Yann Ferrec, Nicolas Guérineau, Sylvain Rommeluère, Jean Taboury, and Pierre Chavel  »View Author Affiliations


JOSA A, Vol. 29, Issue 6, pp. 936-944 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000936


View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

© 2012 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Detectors

History
Original Manuscript: December 21, 2011
Manuscript Accepted: February 11, 2012
Published: May 21, 2012

Citation
Frédéric Gillard, Yann Ferrec, Nicolas Guérineau, Sylvain Rommeluère, Jean Taboury, and Pierre Chavel, "Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer," J. Opt. Soc. Am. A 29, 936-944 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-6-936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992). [CrossRef]
  2. S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010). [CrossRef]
  3. Y. Ferrec, S. Rommeluère, D. Henry, and N. Guérineau, “First results from Mistere, a cryogenic static Fourier-transform spectroradiometer,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB6.
  4. N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004). [CrossRef]
  5. H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005). [CrossRef]
  6. S. Rommeluère, N. Guérineau, R. Haidar, J. Deschamps, E. De Borniol, A. Million, J-P Chamonal, and G. Destefanis, “Infrared focal plane array with a built-in stationary Fourier-transform spectrometer: basic concepts,” Opt. Lett. 33, 1062–1064(2008). [CrossRef]
  7. M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010). [CrossRef]
  8. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972), pp. 1–15.
  9. A. R. Korb, “Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Appl. Opt. 35, 1679–1692 (1996). [CrossRef]
  10. W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002). [CrossRef]
  11. F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010). [CrossRef]
  12. S. Rommeluère, “Intégration d′un micro-spectromètre statique par transformée de Fourier sur un plan focal infrarouge,” Ph.D. thesis (Université Paris Sud, 2007).
  13. P. Voge and J. Primot, “Simple infrared Fourier transform spectrometer adapted to low light level and high-speed operation,” Opt. Eng. 37, 2459–2466 (1998). [CrossRef]
  14. N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010). [CrossRef]
  15. M. Françon, “Localization and visibility of fringes,” in Optical Interferometry (Academic, 1966), pp. 62–67.
  16. G. Fortunato and P. Jacquinot, “Recherche de l’étendue maximale dans les interféromètres,” C. R. Acad. Sci. Paris 274-B, 688–691 (1972).
  17. J. C. Wyant, “Fringe localization,” Appl. Opt. 17, 1853 (1978). [CrossRef]
  18. P. Hariharan, Optical Interferometry (Academic, 1986), p. 23.
  19. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  20. In fact, one should also take into account the optical path to go from M to its image M1 by the first arm of the interferometer, and the one to go from M to its image M2 by the second arm of the interferometer. Indeed, the stigmatism hypothesis between M and M1, for instance, means only that the path to go from M to M1 does not depend on the considered ray, but it does depend on point M or on the considered arm. However, this is only a phase term, and as long as we are interested mainly in the contrast of the fringes, we will omit this term.
  21. Considering large incident angles, we should use the Fresnel formula for each polarization. Nevertheless, in the rest of this article, we will only use the Fresnel coefficients under normal incidence.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited