Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Evolutionary algorithm based uniform received power and illumination rendering for indoor visible light communication

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, an evolutionary algorithm based optimization scheme is proposed to realize uniform received power and illumination distribution on the communication floor for fully diffuse indoor visible light communication. Simulation results show that in three distributed lighting configurations, by dynamically modifying the relative optical intensity of transmitters the dynamic range of the received power, referenced against the peak received power, can be reduced to about 40.0% while the uniformity illuminance ratio can be improved up to about 0.70 with the impact to the root mean square delay spread and bandwidth being negligible. Furthermore, the relationship between the field of view of the receivers and the optimization performance is presented as well.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Joint power allocation and orientation for uniform illuminance in indoor visible light communication

Manh Le Tran and Sunghwan Kim
Opt. Express 27(20) 28575-28587 (2019)

Optimum power allocation for uniform illuminance in indoor visible light communication

G. V. S. S. Praneeth Varma
Opt. Express 26(7) 8679-8689 (2018)

Uniformity improvement on received optical power for an indoor visible light communication system with an angle diversity receiver

Sihui Chi, Ping Wang, Shuqiang Niu, Hui Che, Zhao Wang, and Yiran Wu
Appl. Opt. 60(26) 8031-8037 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.