OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 994–1002

Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor

Sergiy J. Zalyubovskiy, Maria Bogdanova, Alexei Deinega, Yurii Lozovik, Andrew D. Pris, Kwang Hyup An, W. Paige Hall, and Radislav A. Potyrailo  »View Author Affiliations


JOSA A, Vol. 29, Issue 6, pp. 994-1002 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000994


View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the theoretical sensitivity limit of the localized surface plasmon resonance (LSPR) to the surrounding dielectric environment is discussed. The presented theoretical analysis of the LSPR phenomenon is based on perturbation theory. Derived results can be further simplified assuming quasistatic limit. The developed theory shows that LSPR has a detection capability limit independent of the particle shape or arrangement. For a given structure, sensitivity is directly proportional to the resonance wavelength and depends on the fraction of the electromagnetic energy confined within the sensing volume. This fraction is always less than unity; therefore, one should not expect to find an optimized nanofeature geometry with a dramatic increase in sensitivity at a given wavelength. All theoretical results are supported by finite-difference time-domain calculations for gold nanoparticles of different geometries (rings, split rings, paired rings, and ring sandwiches). Numerical sensitivity calculations based on the shift of the extinction peak are in good agreement with values estimated by perturbation theory. Numerical analysis shows that, for thin (10nm) analyte layers, sensitivity of the LSPR is comparable with a traditional surface plasmon resonance sensor and LSPR has the potential to be significantly less sensitive to temperature fluctuations.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.3030) Scattering : Index measurements
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 10, 2012
Manuscript Accepted: February 23, 2012
Published: May 25, 2012

Citation
Sergiy J. Zalyubovskiy, Maria Bogdanova, Alexei Deinega, Yurii Lozovik, Andrew D. Pris, Kwang Hyup An, W. Paige Hall, and Radislav A. Potyrailo, "Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor," J. Opt. Soc. Am. A 29, 994-1002 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-6-994


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011). [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007). [CrossRef]
  3. J. Homola, S. S. Yeea, and Gunter Gauglitz, ”Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999). [CrossRef]
  4. R. B. M. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).
  5. G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008). [CrossRef]
  6. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009). [CrossRef]
  7. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004). [CrossRef]
  8. K. Imura, H Okamoto, and T. Nagahra, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004). [CrossRef]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  10. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002). [CrossRef]
  11. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76, 5370–5378 (2004). [CrossRef]
  12. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004). [CrossRef]
  13. A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010). [CrossRef]
  14. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009). [CrossRef]
  15. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008). [CrossRef]
  16. D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008). [CrossRef]
  17. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008). [CrossRef]
  18. C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays”, Biophys. J., 93, 3684–3692 (2007). [CrossRef]
  19. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006). [CrossRef]
  20. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007). [CrossRef]
  21. E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325–332 (2002). [CrossRef]
  22. E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3, 543–547 (2003). [CrossRef]
  23. M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009). [CrossRef]
  24. L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005). [CrossRef]
  25. Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002). [CrossRef]
  26. S. R. Beeram and F. P. Zamborini, “Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing,” ACS Nano 4, 3633–3646(2010). [CrossRef]
  27. A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008). [CrossRef]
  28. Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010). [CrossRef]
  29. E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007). [CrossRef]
  30. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009). [CrossRef]
  31. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef]
  32. C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008). [CrossRef]
  33. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007). [CrossRef]
  34. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008). [CrossRef]
  35. R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7, 1113–1118 (2007). [CrossRef]
  36. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005). [CrossRef]
  37. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006). [CrossRef]
  38. A. Unger and M. Kreiter, “Detecting molecules with plasmonic resonators—analytic expressions and bounds for the sensitivity and figure of merit,” preprint, http://arxiv.org/abs/1007.0837.
  39. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009). [CrossRef]
  40. A. Unger and M. Kreiter, “Analyzing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C 113, 12243–12251 (2009). [CrossRef]
  41. A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech, 2005).
  42. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006). [CrossRef]
  43. Electromagnetic Template Library, http://fdtd.kintechlab.com .
  44. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15, 18119–18129 (2007). [CrossRef]
  45. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef]
  46. http://fdtd.kintechlab.com/en/fitting .
  47. A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett. 37, 112–114 (2012). [CrossRef]
  48. A. Vial, “Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD methods,” J. Opt. A 9, 745–748 (2007). [CrossRef]
  49. A. Deinega and I. Valuev, “Long-time behavior of PML absorbing boundaries for layered periodic structures,” Comput. Phys. Commun. 182, 149–151 (2011). [CrossRef]
  50. A. Deinega and I. Valuev, “Subpixel smoothing for conductive and dispersive media in the FDTD method,” Opt. Lett. 32, 3429–3431 (2007). [CrossRef]
  51. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006). [CrossRef]
  52. Y. Khalavka, J. Becker, and C. Solonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” J. Am. Chem. Soc. 131, 1871–1875 (2009). [CrossRef]
  53. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a probability approach,” J. Chem. Phys. 119, 3926–3934 (2003). [CrossRef]
  54. C. Nehl, H. Liao, and J. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006). [CrossRef]
  55. J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010). [CrossRef]
  56. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998). [CrossRef]
  57. M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009). [CrossRef]
  58. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  59. I. Valuev, A. Deinega, and S. Belousov, “Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method,” Opt. Lett. 33, 1491–1493 (2008). [CrossRef]
  60. D. R. Lide, ed., Handbook of Chemistry Physics, 71st ed. (CRC Press, 1990).
  61. C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited